Questioning the AI: Towards Human Centered Explainable AI (XAI)

Research work 2018-2021

Q. Vera Liao
IBM Research
AI Explainability 360
This extensible open source toolkit can help you comprehend how machine learning models predict labels by various means throughout the AI application lifecycle. We invite you to use it and improve it.

AI Fairness 360
This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it.

Adversarial Robustness 360
The open source Adversarial Robustness Toolbox provides tools that enable developers and researchers to evaluate and defend machine learning models and applications against the adversarial threats of evasion, poisoning, extraction, and inference.

HCI research as bridging work: From toolboxes of AI algorithms to toolboxes of design materials
Explainable AI (XAI): Definition

Narrow definition:
Techniques and methods that make a model’s decisions understandable by people

Broader definition:
(Comprehensible/intelligible AI)
Everything that makes AI understandable (e.g., also including data, functions, performance, etc.)

XAI is not just ML (also explainable robotics, planning, etc.), but our current work focuses on explaining supervised ML
Supervised Machine Learning

Training data set

Label: Apple Label: Cake

Features:
Color Shape Smell ...

Learning Model
(Using a ML algorithm)

New instance

Prediction label: Cake
Supervised Machine Learning

Training data set
- Label: Apple
- Label: Cake

Features:
- Color
- Shape
- Smell
- ...

Explaining data

Learning Model
(Using a ML algorithm)

Prediction label:
Cake

Explaining “model facts”: performance, limitations, output, etc.

XAI focus: explaining model decision

New instance
The quest for explainable AI (XAI)

Companies Grapple With AI’s Opaque Decision-Making Process

We Need AI That Is Explainable, Auditable, and Transparent

Why “Explainability” Is A Big Deal In AI

From black box to white box: Reclaiming human power in AI

How Explainable AI Is Helping Algorithms Avoid Bias
XAI in regulation: “rights to explanation”

The General Data Protection Regulation (GDPR)

- Limits to decision-making based solely on automated processing and profiling (Art.22)
- Right to be provided with meaningful information about the logic involved in the decision (Art.13 (2) f. and 15 (1) h)

GDPR, 2016
XAI in research funding

- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand

DoD and non-DoD Applications
- Transportation
- Security
- Medicine
- Finance
- Legal
- Military

User
- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

DARPA, 2016
AI is increasingly used in many high-stakes tasks.
Performance-Explainability trade-off

In *average* settings

Learning Techniques (today)

- Neural Nets
- Deep Learning
- Statistical Models
- AOGs
- SVMs

Explainability (notional)

- Graphical Models
- Bayesian Belief Nets
- Ensemble Methods
- Random Forests
- Decision Trees

(Gunning, 2016)
XAI

- Directly explainable model
 - Linear model
 - Decision tree
 - Rule-based model

- Post-hoc explainability
 - Deep neural networks
 - Ensemble models

Breaking the trade-off
- Generalized linear rule model
- Generalized additive models
- ...
XAI “post-hoc”/reconstructive algorithm example: LIME

Neural network, not directly explainable

Use a post-hoc XAI technique

Text with highlighted words
From: johnchad@triton.unm.edu
Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 1
NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.
This is the same question I have and I have not seen an answer on the net. If anyone has a contact please post on the net or email me.
XAI

Transparent model
- Generalized linear rule model
- Generalized additive models
- ...

Post-hoc explainability

Explaining the model (global)
- Feature importance
- Rule approximation
- Decision tree approximation

Explaining a decision (local)
- Local contribution
- Local rules
- Similar instances

Inspecting counterfactual
- Feature influence
- Contrastive features
- Counterfactual instances

Check out our CHI2021 Course materials, with links to AIX360 code libraries: https://hcixaitutorial.github.io/
A growing collection of XAI techniques
XAI in Academia

An abundance of XAI algorithms

From academic research into a practitioners’ toolbox

XAI in Practice

Toolbox of XAI techniques
XAI in Academia

An abundance of XAI algorithms

Toolbox of XAI techniques

Real-world XAI systems? Serving many domains and user groups
XAI in Academia

An abundance of XAI algorithms

- Cognitive science
- HCI
- Social sciences
- Philosophy
- Law

Inter-disciplinary perspectives

XAI in Practice

Toolbox of XAI techniques

Real-world XAI systems? Serving many domains and user groups
An abundance of XAI algorithms

Inter-disciplinary perspectives

• Plurality of motivation for explanation: diagnosis, predicting the future, sense-making, justification, reconciling dissonance, etc. (Kiel 2006; Lombrozo, 2006)

• Explanatory power is recipient dependent, including the question asked (explanatory relevance) (Hilton, 1990; Walton, 2004)

• More complexities:
 - The plurality of psychological processes (Petty and Cacioppo, 1986; Horne et al, 2013)
 - Socio-technical systems (Ehsan et al., 2021)
How to select? How to translate?
Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases
How to **select**? How to **translate**?

Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases

Suitability for different usage contexts *(What contexts?)*
How to select? How to translate?

Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases

Suitability for different usage contexts (*What contexts?*)

Where are the limitations and breakdowns?
How to select? How to translate?

Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases

Suitability for different usage contexts (What contexts?)

Where are the limitations and breakdowns?

What’s beyond the toolbox to achieve understanding?
Contextualize XAI algorithms
Inform gaps and opportunities

How to select? How to translate?

Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases

Suitability for different usage contexts (What contexts?)
Where are the limitations and breakdowns?
What’s beyond the toolbox to achieve understanding?
Thread: HCI Research with XAI Use Cases

I will discuss:
• What use cases
• Why these use cases
• What I have learned

I might not delve into:
• Explanation details
• Research design and results

But please interrupt if you are curious!
XAI use cases in AI lifecycle

Model development
- Training
- Evaluation
- Debugging
- Model construction
- Data preparation
- Task definition

Model usage in deployment
- Decision aid
- Automation
- Model auditing
XAI use cases in AI lifecycle

Model debugging or selection *(IUI 2021)*
XAI user: **Data scientist**

Model development

- Training
- Evaluation
- Debugging
- Model construction
- Data preparation
- Task definition

Model usage in deployment

- Decision aid
- Automation
- Model auditing

Trust calibration and decision support *(FAT* 2020, CHI 2021)*
XAI user: **Decision-maker**

Delegation support *(ongoing)*
XAI consumer: **Domain expert**

Explainable active learning *(CSCW 2020)*
XAI user: **Annotator (domain expert)**

Fairness assessment *(IUI 2019)*
XAI user: **Regulator, impacted groups**
XAI use cases in AI lifecycle

Model debugging or selection (IUI2021)
XAI user: Data scientist
XAI for model debugging and selection

Explanatory debugging
(Kulesza et al, 2015)

GAMUT
(Hohman et al, 2019)
XAI use cases in AI lifecycle

Model debugging or selection (IUI2021)
XAI user: Data scientist

Model usage in deployment
- Decision aid
- Automation
- Model auditing

Trust calibration and decision support (FAT* 2020, CHI 2021)
XAI user: Decision-maker

- Training
- Evaluation
- Debugging
- Model construction
- Data preparation
- Task definition
Users need to know why the system is saying this will be late because the reason is going to determine what their next action is...If it's because of a weather event, so no matter what you do you're not going to improve this number, versus something small, if you just make a quick call, you can get that number down (I-5)
XAI for human-AI collaboration and **trust calibration**

There is a calibration of trust, whether people will use it over time. But also saying hey, we know this fails in this way (1-6)
XAI for **trust calibration** in decision-making

Caveat: Explanation can lead to unwarranted trust!

Figure 11: Screenshots of explanation for cases where the model had low confidence.

Zhang et al. *Effect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making*. FAT* 2020

Poursabzi-Sangdeh, et al. Manipulating and measuring model interpretability. *CHI 2021*

Bansal et al. Does the whole exceed its parts? the effect of ai explanations on complementary team performance. *CHI 2021*
XAI use cases in AI lifecycle

Model debugging or selection *(IUI 2021)*
XAI user **Data scientist**

Model usage in deployment
- Decision aid
- Automation
- Model auditing

Trust calibration and decision support *(FAT* 2020, CHI 2021)*
XAI user **Decision-maker**

Fairness assessment *(IUI 2019)*
XAI user: **Regulator, impacted groups**
Fair ML: What is unwanted bias?

Discrimination becomes objectionable when it places certain *unprivileged* groups at a systematic disadvantage.

Illegal in certain contexts

(Barocas and Selbst, 2017)
Discrimination in COMPAS

DYLAN FUGETT

Prior Offense
1 attempted burglary

Subsequent Offenses
3 drug possessions

LOW RISK 3

BERNARD PARKER

Prior Offense
1 resisting arrest without violence

Subsequent Offenses
None

HIGH RISK 10

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.
BRIEF HISTORY OF FAIRNESS IN ML

PAPERS

LOL FAIRNESS!!

OH, CRAP.

(Hardt, 2017)
XAI as interfaces for scrutinizing discrimination

Contrastive:
- Iliana’s race is African American. If it had been Caucasian, she would have been predicted as NOT likely to reoffend.
- Iliana’s age is 18-29. If it had been older than 39, she would have been predicted as NOT likely to reoffend.

Feature importance
The more +/−/− means a person with that attribute is more/less likely to re-offend.
+ Appears next to Iliana’s attributes
Race
• Caucasian (0)
• African-American (+)
Age
• 18-29 (++++)
• 30-39(++)
• ...
Charge degree:
• ...
Number of prior convictions
• ...
Has juvenile priors:

Defendant: Iliana
- Race: African-American
- Age: 18-29
- Charge degree: Misdemeanor
- Prior convictions: 0
- Has juvenile priors: Yes
Prediction: Likely to reoffend

Example-based
The training set contained 10 individuals identical to Iliana.
6 of them reoffend (60%)

Data distribution
The prediction is based on the likelihood of previous cases with different attributes re-offended or not.
A * appears next to Iliana’s features.
Race
• 40% in Caucasian race group re-offended
• * 55% in African-American race group re-offended
Age
• * 58% in 18-29 age group re-offended
• 49% in 30-39 age group re-offended
• ...
Charge degree:
• ...
Number of prior convictions
• ...
Has juvenile priors:

Explain a prediction: Individual fairness

Explain the model: Group fairness

Is the way the model makes risk predictions fair?
Is this person treated fairly?

Regulator
Impacted groups

Lessons learned: From XAI algorithms to XAI UX

- **No one-fits-all solutions**
- XAI UX often needs **multiple types of explanation/transparency information**
 - Anticipate *when* and *where* users want *what* explanations
- **Beware of the potential risk of XAI**
 - Unwarranted trust and confidence
 - Distraction and information workload
 - Disparate effect: disadvantage people with “non-ideal” ability and motivation to process XAI
- **Under-developed “translation” design space**
- Algorithmic explanations may not satisfy all users’ information needs to achieve understanding of AI
HCXAI: “understanding” lies in the recipient

The General Data Protection Regulation (GDPR)
- Limits to decision-making based solely on automated processing and profiling (Art.22)
- Right to be provided with meaningful information about the logic involved in the decision (Art.13 (2) f and 15 (1) h)

“meaningful” ???

(Nemitz, 2018)
“Understanding” lies in the recipient: beyond the toolbox

XAI techniques

XAI UX

Information needs to achieve understanding of AI:

- General AI knowledge gaps
- Domain knowledge gaps
“Understanding” lies in the recipient: beyond the toolbox

Sense-making is not just about opening the closed box of AI, but also about who is around the box, and the socio-technical factors that govern the use of the AI system and the decision. Thus, the ‘ability’ in explainability does not lie exclusively in the guts of the AI system.

Information needs to achieve understanding of AI:
- General AI knowledge gaps
- Domain knowledge gaps
- “Socially situated understanding”

Ehsan et al. Expanding Explainability: Towards Social Transparency in AI systems. To appear in CHI 2021
Towards “social transparency” in AI systems

Recommendation: Sell at $100 per account per month

Justification: the AI system considered the following components
- Quota goals
- Comparative pricing: what similar customers pay
- Cost: $55 /account/month

For this customer, 3 members of your team received pricing recommendations in past sales. However, 1 out 3 have sold at the recommended price. Click to see more details.

Action: Reject Recommendation ↔ Outcome: No Sale
Comment: Long-term profitable customer; main revenue from a different vertical; selling at cost price to maintain relationship
Date: Oct 2, 2019

Action: Accept Recommendation ↔ Outcome: Sale
Comment: Recommended price aligned with profit margins; customer felt the price was fair
Date: Dec 14, 2019

Action: Reject Recommendation ↔ Outcome: Sale
Comment: Covid-19 pandemic mode; cannot lose long-term profitable customer; offered 10% below cost price
Date: May 6, 2020

Ehsan et al. Expanding Explainability: Towards Social Transparency in AI systems. To appear in CHI 2021
Many user objectives + user groups + domains + social contexts

(Hind et al., 2019)
Thread 1: Study and support design practices for XAI UX

Thread 2: HCI research with XAI use cases
Where we started: Research into XAI Design Practices

Research questions:

• What is the design space of XAI UX?

• What are the design challenges?

A technical space people are not quite in there yet... how to talk about it?
Study probe: algorithm informed XAI Questions

<table>
<thead>
<tr>
<th>Category of Methods</th>
<th>Explanation Method</th>
<th>Definition</th>
<th>Algorithm Examples</th>
<th>Question Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the model</td>
<td>Global feature importance</td>
<td>Describe the weights of features used by the model (including visualization that shows the weights of features)</td>
<td>[41, 60, 69, 90] [11, 47, 52] [26, 93, 102]</td>
<td>How, Why, Why not, What if</td>
</tr>
<tr>
<td>(Global)</td>
<td>Decision tree approximation</td>
<td>Approximate the model to an interpretable decision-tree</td>
<td></td>
<td>How, Why, Why not, What if</td>
</tr>
<tr>
<td></td>
<td>Rule extraction</td>
<td>Approximate the model to a set of rules, e.g., if-then rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explain a prediction</td>
<td>Local feature importance and saliency method</td>
<td>Show how features of the instance contribute to the model’s prediction (including causes in parts of an image or text)</td>
<td>[61, 74, 83, 85, 101] [39, 75, 99]</td>
<td>Why, Why, How to still be this</td>
</tr>
<tr>
<td>(Local)</td>
<td>Local rules or trees</td>
<td>Describe the rules or a decision-tree path that the instance fits to guarantee the prediction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect counterfactual</td>
<td>Feature influence or relevance method</td>
<td>Show how the prediction changes corresponding to changes of a feature (often in a visualization format)</td>
<td>[8, 33, 36, 51] [27, 91, 100]</td>
<td>What if, How to be that, How to still be this</td>
</tr>
<tr>
<td></td>
<td>Contrastive or counterfactual features</td>
<td>Describe the feature(s) that will change the prediction if perturbed, absent or present</td>
<td></td>
<td>Why, Why not, How to be that</td>
</tr>
<tr>
<td>Example based</td>
<td>Prototypical or representative examples</td>
<td>Provide example(s) similar to the instance and with the same record as the prediction</td>
<td>[13, 48, 50] [37, 55, 66]</td>
<td>Why, How to still be this</td>
</tr>
<tr>
<td></td>
<td>Counterfactual example</td>
<td>Provide example(s) with small differences from the instance but with a different record from the prediction</td>
<td></td>
<td>Why, Why not, How to be that</td>
</tr>
</tbody>
</table>

- User needs for XAI are represented as prototypical questions
- A question can be answered by one or multiple XAI methods
- An XAI method can be implemented by one or multiple XAI algorithms

An explanation is an answer to a question (Wellman, 2011; Miller 2018)
The effectiveness of an explanation depends on the question asked (Bromberger, 1992)
Question: Why is this husky classified as wolf?

XAI method: local feature (pixels) contribution

XAI algorithms:
- LIME (Ribeiro et al. 2016)
- SHAP (Lundberg and Lee 2017)
- ...
Study probe: algorithm informed XAI Questions

<table>
<thead>
<tr>
<th>Category of Methods</th>
<th>Explanation Method</th>
<th>Definition</th>
<th>Algorithm Examples</th>
<th>Question Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the model (Global)</td>
<td>Global feature importance</td>
<td>Describe the weights of features used by the model (including visualization that shows the weights of features)</td>
<td>[41, 60, 69, 90]</td>
<td>How</td>
</tr>
<tr>
<td>Explain the model (Global)</td>
<td>Decision tree approximation</td>
<td>Approximate the model to an interpretable decision-tree approximation</td>
<td>[11, 47, 52]</td>
<td>How, Why, Why not, What if</td>
</tr>
<tr>
<td>Explain the model (Global)</td>
<td>Rule extraction</td>
<td>Approximate the model to a set of rules, e.g., if-then rules</td>
<td>[26, 93, 102]</td>
<td>How, Why, Why not, What if</td>
</tr>
<tr>
<td>Explain a prediction (Local)</td>
<td>Local feature importance and saliency method</td>
<td>Show how features of the instance contribute to the model’s prediction (including causes in parts of an image or text)</td>
<td>[61, 74, 83, 85, 101]</td>
<td>Why</td>
</tr>
<tr>
<td>Explain a prediction (Local)</td>
<td>Local rules or trees</td>
<td>Describe the rules or a decision-tree path that the instance fits to guarantee the prediction</td>
<td>[39, 75, 99]</td>
<td>Why, How to still be this</td>
</tr>
<tr>
<td>Inspect counterfactual</td>
<td>Feature influence or relevance method</td>
<td>Show how the prediction changes corresponding to changes of a feature (often in a visualization format)</td>
<td>[8, 33, 36, 51]</td>
<td>What if, How to be that, How to still be this</td>
</tr>
<tr>
<td>Inspect counterfactual</td>
<td>Contrastive or counterfactual features</td>
<td>Describe the feature(s) that will change the prediction if perturbed, absent or present</td>
<td>[27, 91, 100]</td>
<td>Why, Why not, How to be that</td>
</tr>
<tr>
<td>Example based</td>
<td>Prototypical or representative examples</td>
<td>Provide example(s) similar to the instance and with the same record as the prediction</td>
<td>[13, 48, 50]</td>
<td>Why, How to still be this</td>
</tr>
<tr>
<td>Example based</td>
<td>Counterfactual example</td>
<td>Provide example(s) with small differences from the instance but with a different record from the prediction</td>
<td>[37, 55, 66]</td>
<td>Why, Why not, How to be that</td>
</tr>
</tbody>
</table>

++

Model facts: data, output, performance

(Lim et al., 2009)
Methodology

- Interviewed **20 participants**
- **16 AI products** in IBM

1. Walk through the AI system
2. Common questions users might ask
3. Discuss each question card
4. General challenges to create XAI products

Understanding input (training data): What kind of data does the system learn from?
- What is the source of the data?
- How are the labels/ground-truth produced?

Understanding model globally: How does the system make predictions (overall logic)?
- What algorithm is used?
- What rules does the system use to make predictions?
- What features does the model consider or not consider?
- How does the model weigh/reason with these features?

Understanding output: What kind of output/predictions does the system give?
- What does the system output mean?
- How can I use the output of the system?

Understanding prediction for a particular case: Why this? Why not that?
- Why is this case given this prediction? Why is it NOT predicted that?
- What feature(s) of this case lead to the model’s prediction for it?
- What kind of cases are predicted this?
- Why are [cases A and B] given the same prediction?
- Why are [cases A and B] given different predictions?

Understanding model performance and certainty: How accurate/reliable are the system’s predictions?
- How often does the system make mistakes?
- When/under what situation is the system likely to be correct/wrong?

Other category (add your own question)
Methodology

- Interviewed **20 participants**
- **16 AI products** in IBM

1. Walk through the AI system
2. Common questions users might ask
3. Discuss each question card
4. General challenges to create XAI products

Understanding input (training data): What kind of data does the system learn from?
- What is the source of the data?
- How are the labels/ground-truth produced?

Understanding output: What kind of output/predictions does the system give?
- What does the system output mean?
- How can I use the output of the system?

Understanding model globally: How does the system make predictions (overall logic)?
- What algorithm is used?
- What rules does the system use to make predictions?
- What features does the model consider or not consider?
- How does the model weigh/reason with these features?

Understanding prediction for a particular case: Why this? Why not that?
- Why is this case given this prediction? Why is it NOT predicted that?
- What feature(s) of this case lead to the model’s prediction for it?
- What kind of cases are predicted this?
- Why are [cases A and B] given the same prediction?
- Why are [cases A and B] given different predictions?

Understanding model performance and certainty: How accurate/reliable are the system’s predictions?
- How often does the system make mistakes?
- When/under what situation is the system likely to be correct/wrong?
XAI Question Bank

Data
- What kind of data was the system trained on?
- What is the source of the training data?
- How were the labels/ground-truth produced?
- What is the sample size of the training data?
- What dataset(s) is the system NOT using?
- What are the potential limitations/biases of the data?
- What is the size, proportion, or distribution of the training data with given feature(s)/feature-value(s)?

Output
- What kind of output does the system give?
- What does the system output mean?
- What is the scope of the system's capability? Can it do...?
- How is the output used for other system component(s)?
- How should I best utilize the output of the system?
- How should the output fit in my workflow?

Performance
- How accurate/precise/reliable are the predictions?
- How often does the system make mistakes?
- In what situations is the system likely to be correct/incorrect?
- What are the limitations of the system?
- What kind of mistakes is the system likely to make?
- Is the system's performance good enough for...?

How
- How does the system make predictions?
 - What features does the system consider?
 - Is [feature X] used or not used for the predictions?
- What is the system's overall logic?
 - How does it weigh different features?
 - What kind of rules does it follow?
 - How does [feature X] impact its predictions?
 - What are the top rules/features that determine its predictions?
- What kind of algorithm is used?
 - How were the parameters set?

Why
- Why/how is this instance given this prediction?
- What feature(s) of this instance determine the system's prediction of it?
- Why are [instance A and B] given the same prediction?

Why not
- Why is this instance NOT predicted to be [a different outcome Q]?
- Why is this instance predicted [P instead of a different outcome Q]?
- Why are [instance A and B] given different predictions?

How to be that
(a different prediction)

How to still be this
(the current prediction)

What If
- What would the system predict if this instance changes to...?
- What would the system predict if a given feature changes to...?
- What would the system predict for [a different instance]?

Others
- How/why will the system change/adapt/improve/drift over time? (change)
- Can I, and if so, how do I, improve the system? (improvement)
- Why is the system using or not using a given algorithm/feature/rule/dataset? (follow-up)
- What does [a machine learning terminology] mean? (terminological)
- What are the results of other people using the system? (social)
XAI design challenge 1: Variability of XAI needs

Diverse objectives for explainability

- To gain further insights for the decision
- To appropriately evaluate AI’s capability
- To adapt usage or control
- To learn about a domain
- Legal or ethical requirement: fairness, privacy, etc.

Also varying XAI needs: User group, usage point, algorithm and data type, decision context
XAI design challenge 2: Gaps between algorithmic output and human-desired explanations

Human explanations are

• Selective
• Contrastive
• Interactive
• Tailored for recipients

“Translation” design: mimic how domain experts explain

XAI design challenge 3: “in the dark” design process

• Challenge **navigating the technical capabilities**

 finding the right pairing to put the ideas of what’s right for the user together with what’s doable given the tools or the algorithms

• **Communication barriers** and **implementation cost** impeding buy-in from data scientists and the team

 It remains in this weird limbo where people know it's important. People see it happen. They don't know how to make it happen. And everybody's feeling their way in the dark with no lights.
Opportunities for technical XAI work

- Explain data limitations and generalizability
- Explain output of multiple models
- Explain system changes
- Multi-level global explanations
- Interactive counterfactual explanations
- Social explanations
- Personalized and adaptive explanations

Guidelines to address XAI user needs

Input: Provide comprehensive transparency of training data, especially the limitations

Output: Contextualize the system’s output in downstream tasks and the users’ overall workflow

Performance: Help users understand the limitations of the AI and make it actionable

Global model: Choose appropriate level of details to explain the model

Local decision: Provide resources for “why not”

Counterfactual: Consider opportunities as utility features for analytics or exploration

User-centered design process: **Question-driven XAI design**

Pain points to address:
- Throughly identify interaction specific XAI user needs
- Enable a “designedly” understanding of XAI techniques to find the right pairing
- Support designer-engineer collaboration

XAI Question Bank

<table>
<thead>
<tr>
<th>Data</th>
<th>Output</th>
<th>Performance</th>
</tr>
</thead>
</table>
| - What kind of data was the system trained on?
 - What is the source of the training data?
 - How were the labels/ground-truth produced?
 - What is the sample size of the training data?
 - What dataset(s) is the system NOT using?
 - What are the potential limitations/biases of the data?
 - What is the size, proportion, or distribution of the training data with given feature(s)/feature-value(s)? | - Why/how is this instance given this prediction?
 - What feature(s) of this instance determine the system’s prediction of it?
 - Why are [instance A and B] given the same prediction?
 - Why is this instance NOT predicted to be [a different outcome Q]?
 - Why is this instance predicted [P instead of a different outcome Q]?
 - Why are [instance A and B] given different predictions? | - How should this instance change to get a different prediction Q?
 - What is the minimum change required for this instance to get a different prediction Q?
 - How should a given feature change for this instance to get a different prediction Q?
 - What kind of instance is predicted of [a different outcome Q]?
 - How/when does the system make predictions?
 - What features does the system consider?
 - Is [feature X] used or not used for the predictions? |
| - What kind of output does the system give?
 - What does the system output mean?
 - What is the scope of the system’s capability? Can it do…?
 - How is the output used for other system component(s)?
 - How should I best utilize the output of the system?
 - How should the output fit in my workflow? | - How to still be this (the current prediction) | - What is the scope of change permitted for this instance to still get the same prediction?
 - What is the range of value permitted for a given feature for this prediction to stay the same?
 - What is the necessary feature(s)/feature-value(s) present or absent to guarantee this prediction?
 - What kind of instance gets the same prediction?
 - How does the system make predictions?
 - What features does the system consider?
 - Is [feature X] used or not used for the predictions? |
| - How accurate/precise/reliable are the predictions?
 - How often does the system make mistakes?
 - In what situations is the system likely to be correct/incorrect?
 - What are the limitations of the system?
 - What kind of mistakes is the system likely to make?
 - Is the system’s performance good enough for…? | - Why | - What would the system predict if this instance changes to…?
 - What would the system predict if a given feature changes to…?
 - What would the system predict for [a different instance]?
 - How/why will the system change/adapt/improve/drift over time? (change)
 - Can I, and if so, how do I, improve the system? (improvement)
 - Why is the system using or not using a given algorithm/feature/rule/dataset? (follow-up)
 - What does [a machine learning terminology] mean? (terminological)
 - What are the results of other people using the system? (social) |
| - How does the system make predictions?
 - What features does the system consider?
 - Is [feature X] used or not used for the predictions?
 - What is the system’s overall logic?
 - How does it weigh different features?
 - What kind of rules does it follow?
 - How does [feature X] impact its predictions?
 - What are the top rules/features that determine its predictions?
 - What kind of algorithm is used?
 - How were the parameters set? | - Others |
<table>
<thead>
<tr>
<th>Question</th>
<th>Explanations</th>
<th>Example XAI techniques</th>
</tr>
</thead>
</table>
| Global how | • Describe what algorithm is used and what features are considered, if a user is only interested in a high-level view
• Describe the general model logic as feature impact*, rules+ or decision-trees* (sometimes need to explain with a surrogate simple model) | ProfWeight**, Feature Importance*, PDP*, BRCG+, GLRM+, Rule List+, DT Surrogate* |
| Why | • Describe what key features of the particular instance determine the model’s prediction of it*
• Describe rules* that the instance fits to guarantee the prediction
• Show similar examples* with the same predicted outcome to justify the model's prediction | LIME*, SHAP*, LOCO*, Anchors*, ProtoDash* |
| Why not | • Describe what changes are required for the instance to get the alternative prediction and/or what features of the instance guarantee the current prediction*
• Show prototypical examples+ that had the alternative outcome | CEM*, Prototype counterfactual+, ProtoDash+ (on alternative class) |
| How to be that | • Highlight features that if changed (increased, decreased, absent, or present) could alter the prediction*
• Show examples with small differences but had a different outcome than the prediction+ | CEM*, Counterfactuals*, DiCE+ |
| What if | • Show how the prediction changes corresponding to the inquired change | PDP, ALE, What-if Tool |
| Performance | • Describe feature ranges* or rules+ that could guarantee the same prediction
• Show examples that are different from the particular instance but still had the same outcome | CEM*, Anchors+ |
| How to still be this | • Provide performance metrics of the model
• Show confidence or uncertainty information for each prediction
• Describe potential strengths and limitations of the model | Precision, Recall, Accuracy, F1, AUC
Confidence
FactSheets, Model Cards |
| Data | • Document comprehensive information about the training data, including the source, provenance, type, size, coverage of population, potential biases, etc. | FactSheets, DataSheets |
| Output | • Describe the scope of output or system functions
• Suggest how the output should be used for downstream tasks or user workflow | FactSheets, Model Cards |

Questions as *re-framing* the technical space of XAI

Questions as *"boundary objects"* supporting designer-engineer collaboration

Liao et al. [Question-Driven Design Process for Explainable AI User Experiences](https://example.com). (Working paper)
Question-Driven XAI Design

Step 1: Identify user questions
- Elicit user needs for XAI as questions
- Also gather user intentions and expectations for asking the questions

Step 2: Analyze questions
- Cluster questions into categories and prioritize categories for the XAI UX to focus on
- Summarize user intentions and expectations to identify key user requirements

Step 3: Map questions to modeling solutions
- Map prioritized question categories to candidate XAI techniques as a set of functional elements that the design should cover

Step 4: Iteratively design and evaluate
- Create a design including the candidate elements identified in step 3
- Iteratively validate the design with the user requirements identified in step 2 and fill the gaps

HealthMind is developing an AI based dashboard system to help clinicians assess patients’ readmission risks at discharge time.

By simply providing a risk score, the system is of limited use for clinicians. **Clinicians need to understand how the system arrives at a risk score for a patient in order to feel confident in the judgment and identify effective interventions to improve the patient’s health outcomes.**

The team needs to develop an explainable AI system but is not sure where to start.
Question-Driven XAI Design

Step 1

Identify user questions

Elicit user needs for XAI as questions

Also gather user intentions and expectations for asking the questions

Designers, users

Identify relevant questions

Elicit user questions to identify what types of explanation are needed

Also collect the intention and expectation behind these user questions

Task description

An AI based dashboard presents patients’ readmission risk scores to help clinicians to identify high-risk patients.
Identify relevant questions

Elicit user questions to identify what types of explanation are needed

Also collect the intention and expectation behind these user questions

What are the main risk factors for this person?

“What help me better understand the patient, discover otherwise non-obvious factors, e.g. social status or community factors”

What is the population of the training data?

“Without knowing if it applies to my patients I can’t trust it”
Question-Driven XAI Design

Step 1

Identify user questions

Elicit user needs for XAI as questions

Also gather user intentions and expectations for asking the questions

Step 2

Analyze questions

Cluster questions into categories and prioritize categories for the XAI UX to focus on

Summarize user intentions and expectations to identify key user requirements

Designers, users

Designers, product team

Categorize and prioritize questions, identify key user requirements

Cluster similar questions across users into categories (use the Question Bank to guide labeling if needed)

Prioritize clusters with more questions

Summarize user intentions and expectations to identify key user requirements
User requirements

UR1: Discover new information about the patient	“Help me better understand the patient, discover”	“Help me see the patient as a whole”	“I want to know what is unique about this patient”
UR2: Determine effective next steps for the patient	“Help me determine the right intervention”	“Help us decide where and how to focus our resources on”	“To know what actions we can take with this patient”
UR3: Increase confidence to use the tool	“I will be more comfortable using the tool”	“Without knowing if it applies to my patients I can’t trust it”	
UR4: Appropriately evaluate the reliability of a prediction	“So I know whether I should lean on my own experience”		
Question-Driven XAI Design

Step 1
Identify user questions

Elicit user needs for XAI as questions

Also gather user intentions and expectations for asking the questions

Step 2
Analyze questions

Cluster questions into categories and prioritize categories for the XAI UX to focus on

Summarize user intentions and expectations to identify key user requirements

Step 3
Map questions to modeling solutions

Map prioritized question categories to candidate XAI techniques as a set of functional elements that the design should cover

A mapping guide for supervised ML is provided for reference

Designers, users

Designers, product team

Designers, data scientists

<table>
<thead>
<tr>
<th>Question</th>
<th>Explanations</th>
<th>Example XAI techniques</th>
</tr>
</thead>
</table>
| **Global how** | • Describe what algorithm is used and what features are considered, if a user is only interested in a high-level view
• Describe the general model logic as feature impact*, rules+ or decision-trees● (sometimes need to explain with a surrogate simple model) | ProfWeight**, Feature Importance*, PDP*, BRCG+, GLRM+, Rule List+, DT Surrogate● |
| **Why** | • Describe what key features of the particular instance determine the model’s prediction of it*
• Describe rules* that the instance fits to guarantee the prediction
• Show similar examples* with the same predicted outcome to justify the model’s prediction | LIME*, SHAP*, LOCO*, Anchors+, ProtoDash● |
| **Why not** | • Describe what changes are required for the instance to get the alternative prediction and/or what features of the instance guarantee the current prediction*
• Show prototypical examples+ that had the alternative outcome | CEM*, Prototype counterfactual+, ProtoDash● (on alternative class) |
| **How to be that** | • Highlight features that if changed (increased, decreased, absent, or present) could alter the prediction*
• Show examples with small differences but had a different outcome than the prediction+ | CEM*, Counterfactuals*, DiCE● |
| **What if** | • Show how the prediction changes corresponding to the inquired change | PDP, ALE, What-if Tool |
| **How to still be this** | • Describe feature ranges* or rules+ that could guarantee the same prediction
• Show examples that are different from the particular instance but still had the same outcome | CEM*, Anchors● |
| **Performance** | • Provide performance metrics of the model
• Show confidence or uncertainty information for each prediction
• Describe potential strengths and limitations of the model | Precision, Recall, Accuracy, F1, AUC, Confidence, FactSheets, Model Cards |
| **Data** | • Document comprehensive information about the training data, including the source, provenance, type, size, coverage of population, potential biases, etc. | FactSheets, DataSheets |
| **Output** | • Describe the scope of output or system functions
• Suggest how the output should be used for downstream tasks or user workflow | FactSheets, Model Cards |

Questions as re-framing the technical space of XAI

Questions as “boundary objects” supporting designer-engineer collaboration

Liao et al. [Question-Driven Design Process for Explainable AI User Experiences](https://example.com). (Working paper)
Question-Driven XAI Design

Step 1

Identify user questions

Elicit user needs for XAI as questions

Also gather user intentions and expectations for asking the questions

Designers, users

Step 2

Analyze questions

Cluster questions into categories and prioritize categories for the XAI UX to focus on

Summarize user intentions and expectations to identify key user requirements

Designers, product team

Step 3

Map questions to modeling solutions

Map prioritized question categories to candidate XAI techniques as a set of functional elements that the design should cover

A mapping guide for supervised ML is provided for reference

Designers, data scientists

Step 4

Iteratively design and evaluate

Create a design including the candidate elements identified in step 3

Iteratively evaluate the design with the user requirements identified in step 2 and fill the gaps

Designers, data scientists, users

Liao et al. [Question-Driven Design Process for Explainable AI User Experiences](#). (Working paper)
Why is this patient predicted to be at high risk? What made him high-risk? What are his risk factors?

What can be done to reduce the patient’s risk? What worked for other patients with similar profiles?

How well does it work? On what types of patient might it work worse?

Is the training data similar to my patients? What is the population of the training data?

AI for Explainable Healthcare Adverse Event Risk Prediction

Conclusions: **Bridging** work

- **Human-centered** re-framing of technical spaces
 - Contextualize the tools by the human needs, values, and conditions they serve
 - Thinking “outside the toolbox” by centering on user needs and goals
- **Responsible** use of the toolbox
 - Examine breakdowns, limitations and potential harm
 - Not assuming “ideal users”
 - Enable user-centered design to drive technical development
- **Actionable** design assets and methods that practitioners can readily use
Human-Centered AI: Beyond explainability

(Shneiderman, 2021)
More resources for XAI

Toolkits/Libraries
- AIX 360
- Sheldon Alibi
- Oracle Skater
- H2o MLI
- Microsoft Interpret
- PyTorch Captum

Readings
- Interpretable ML e-book
- A big list of resources

Design guidelines
- Google PAIR: Explainability+Trust
- SAP Design Guidelines for Explainability
- IBM Design for AI: Explainability
- UXAI for Designers
- Lingua Franca: Transparency
Examples of **translation design** from XAI algorithms to XAI UX

An *under-developed* space

- Choose the right modality to communicate, e.g. visual or text-based
- Choose the right amount of information or level of granularity, e.g. how many features or examples
- Integrate XAI into the overall user workflow and experience. Sometimes it means to minimize distraction
- To achieve understanding, users may require additional information about the domain (e.g., what a feature means), AI (e.g., what a terminology means), socio-organizational contexts, etc.
- Sometimes need to link explanations to other evidence or guidelines (e.g., “how-to” for changing a feature) to support users’ objectives
- Sometimes need to put constraints or revise raw features due to security or privacy concerns
Thank YOU!

…and thanks to

Rachel Bellamy, Amit Dhurandhar, Jonathan Dodge, Casey Dugan, Upol Ehsan, Bhavya Ghai, Werner Geyer, Daniel Gruen, Jaesik Han, Michael Hind, Stephanie Houde, David Millen, David Piorkowski, Aleksandra Mojsilović, Sarah Miller, Klaus Mueller, Michael Muller, Shweta Narkar, Milena Pribić, John Richards, Mark Riedl, Daby Sow, Chenhao Tan, Richard Tomsett, Kush Varshney, Dakuo Wang, Justin Weisz, Yunfeng Zhang

Q. Vera Liao
vera.liao@ibm.com
www.qveraliao.com
@QVeraLiao