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ABSTRACT

Today, AI is being increasingly used to help human experts make

decisions in high-stakes scenarios. In these scenarios, full automa-

tion is often undesirable, not only due to the signiicance of the

outcome, but also because human experts can draw on their domain

knowledge complementary to the model’s to ensure task success.

We refer to these scenarios as AI-assisted decision making, where

the individual strengths of the human and the AI come together

to optimize the joint decision outcome. A key to their success is

to appropriately calibrate human trust in the AI on a case-by-case

basis; knowing when to trust or distrust the AI allows the human

expert to appropriately apply their knowledge, improving decision

outcomes in cases where the model is likely to perform poorly. This

research conducts a case study of AI-assisted decision making in

which humans and AI have comparable performance alone, and ex-

plores whether features that reveal case-speciic model information

can calibrate trust and improve the joint performance of the hu-

man and AI. Speciically, we study the efect of showing conidence

score and local explanation for a particular prediction. Through

two human experiments, we show that conidence score can help

calibrate people’s trust in an AI model, but trust calibration alone is

not suicient to improve AI-assisted decision making, which may

also depend on whether the human can bring in enough unique

knowledge to complement the AI’s errors. We also highlight the

problems in using local explanation for AI-assisted decision mak-

ing scenarios and invite the research community to explore new

approaches to explainability for calibrating human trust in AI.
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1 INTRODUCTION

Artiicial Intelligence (AI) technologies, especially Machine Learn-

ing (ML), have become ubiquitous and are increasingly used in a

wide range of tasks. While algorithms can perform impressively, in

many situations full delegation to ML models is not desired because

their probabilistic nature means that there is never a guarantee

of correctness for a particular decision. Furthermore, ML models

are only as accurate as the historical data used to train them, and

this data could sufer from input error, unknown laws, and biases.

ML models can assist human decision-makers to produce a joint

decision outcome that is hopefully better than what could be pro-

duced by either the model or human alone. Ultimately however,

humans would be responsible for the decisions made. Therefore

ML decision-support applications should be developed not only

with the goal of high performance, safety and fairness, but also

allowing the decision-maker to understand the predictions made by

the model. This is especially important for decision-making in high-

stakes situations afecting human lives such as medical diagnosis,

law enforcement, and inancial investment.

A key to success in AI-assisted decision making is to form a cor-

rect mental model of the model’s error boundaries [2]. That is, the

decision-makers need to know when to trust or distrust the model’s

recommendations. If they mistakenly follow the model’s recom-

mendations at times when it is likely to err, the decision outcome

would sufer, and catastrophic failures could happen in high-stakes

decisions. Many have called out the challenges for humans to form

a clear mental model of an AI, since opaque, "black-box" models are

increasingly used. Furthermore, by exclusively focusing on opti-

mizing model performance, developers of AI systems often neglect

the system users’ needs for developing a good mental model of

the AI’s error boundaries. For example, frequently updating the AI

algorithm may cause confusion to the human decision-maker, who

may accept or reject the AI’s recommendations at a wrong time,

even if the algorithm’s overall performance improved [2].

To help people develop a mental model of an ML model’s error

boundaries means to correctly calibrate trust on a case-by-case basis.

We emphasize that this goal is distinct from enhancing trust in AI.

For example, while research repeatedly demonstrates that providing

high-performance indicators of an AI system, such as showing high

accuracy scores, could enhance people’s trust and acceptance of the

system [17, 30, 32], they may not help people distinguish cases they

can trust from those they should not. Meanwhile, ML is probabilistic

and the probability of each single prediction can be indicated by a

conidence score. In other words, the conidence scores relect the

chances that the AI is correct. Therefore, to optimize for the joint

decisions, in theory people should rely on the AI in cases where it

has high conidence, and use their own judgment in cases where

https://doi.org/10.1145/3351095.3372852
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it has low conidence. However, in practice, we know little about

how conidence scores are perceived by people, or how they impact

human trust and actions in AI-assisted decisions.

To improve people’s distrust in ML models, many considered the

importance of transparency by providing explanations for the ML

model [4, 9, 28]. In particular, local explanations that explain the

rationale for a single prediction (in contrast to global explanations

describing the overall logic of the model) are recommended to help

people judge whether to trust a model on a case-by-case basis [28].

For example, many local explanation techniques explain a predic-

tion by how each attribute of the case contributes to the model’s

prediction [19, 28]. It is possible that in low-certainty cases none of

the features stands out to make strong contributions. So the expla-

nation may appear ambivalent, thus alarming people to distrust the

prediction. While such a motivation to help people calibrate trust

underlies the development of local explanation techniques, to the

best of our knowledge, this assumption has not been empirically

tested in the context of AI-assisted decision making.

In this paper, we conduct a case study of AI-assisted decision-

making and examine the impact of information designs that re-

veal case-speciic model information, including conidence score

and local explanation, on people’s trust in the AI and the decision

outcome. We explored two types of AI-assisted decision-making

scenarios. One where the AI gave direct recommendation, and the

other where the decision-maker had to choose whether to delegate

the decision without seeing the AI’s prediction, the latter of which

represents a stricter test of trust. We designed the study in a way

to have the human decision-makers performing comparably to the

AI, and also explored a situation where the humans know they

had more domain knowledge than the AI. In contrast, prior works

studying AI-assisted decision-making often used setups where hu-

mans’ decision performance was signiicantly inferior than the

model’s [17, 30], which would by default reward people to rely

on the AI. While such a setup is appropriate for studying how to

enhance trust in AI, our focus is to study the calibration of trust

for cases where the AI has high or low certainty. This paper makes

the following contribution:

• We highlight the problem of trust calibration in AI at a

prediction speciic level, which is especially important to the

success of AI-assisted decision-making.

• Wedemonstrate that showing prediction speciic conidence

information could support trust calibration, even in situa-

tions where the human has to blindly delegate the decision

to the AI. However, whether trust calibration could translate

into improved joint decision outcome may depend on other

factors, such as whether the human can bring in a unique

set of knowledge that complements the AI’s errors. We con-

sider the concept of error boundary alignment between the

human and the AI, and its implication for studying diferent

AI-assisted decision making scenarios.

• We show that local, prediction speciic explanations may

not be able to create a perceivable efect for trust calibration,

even though theywere theoretically motivated for such tasks.

We discuss the limitations of the explanation design we used,

and future directions for developing explanations that can

better support trust calibration.

2 RELATED WORK

The concept of trust has its roots in relationships between humans,

relected in many aspects of collaborative behaviors with others

such as willingness to depend, give information and make pur-

chase [12, 21]. Trust has been widely studied in human-computer

and human-machine interaction since users’ decisions to continue

using a system or accept output from a machine are highly trust-

dependant behaviors [18, 25]. Very recently, understanding trust

in interaction with ML systems has sparked much interest across

disciplines, driven by the rapidly growing adoption of ML technolo-

gies. On the one hand, trust in ML systems can be seen as a case

for trust in algorithmic systems. Decades of research on this topic

yielded complex insights on humans’ inclination to trust algorithms

and what factors impact the trust. For example, while some studies

found an "algorithm aversion" where people stop trusting algo-

rithms after seeing mistakes [7], others found the reverse tendency

of "automation bias" with which people overly rely on delegation

to algorithms [6]. On the other hand, ML systems present some

unique challenges for fostering trust. One is their challenge for

scrutablity, especially given the increasing usage of "black box"

ML models such as neural networks. Another challenge is their

inherent uncertainty, since a ML system can make mistakes in its

prediction based on learned patterns, and such uncertainty often

cannot be fully captured before deployment using testing methods.

While many emphasized the requisite of transparency for trust-

ing AI [9, 28], several recent empirical studies found little evidence

that the level of transparency has signiicant impact on people’s

willingness to trust a ML system, whether by using a directly

interpretable model, allowing user to inspect the model behav-

ior, showing explanation or reducing the number of features pre-

sented [5, 16, 27, 29]. Many reasons could have contributed to this

lack of efect. One is the complex mechanism driving trusting be-

haviors. According to theories of trust [6, 12, 15], trusting behaviors

such as adopting suggestions are not only driven by a more posi-

tive perception of the trustee but also other factors such as one’s

disposition to trust and situation awareness. In fact, several studies

suggest that overloading users with information about the system

could potentially harm people’s situation awareness and lead to

worse performance or decision-making outcome [6, 27, 29].

Perhaps more critically, the premise that transparency or show-

ing information to faithfully relect the model’s behavior should

enhance trust is questionable, because enhancing trust for an infe-

rior model is deceiving. Instead, in this paper we focus on the goal

of calibrating trust, to help people correctly distinguish situations

to trust or distrust an AI. While the concept of trust calibration

has been studied for automation [13, 18, 20, 26], as to prevent both

automation aversion and automation bias, it is not well understood

in the context of AI systems. In one relevant study [8], Dodge et al.

compared the efect of diferent explanation methods for calibrating

perceived fairness of MLmodels, i.e. distinguishing between statisti-

cally fair and unfair models. They found that local explanations, by

highlighting unfair features used for individual predictions, appear

to be more alarming than global explanations when used to explain

an unfair model’s decisions, and thus more efective in calibrating

people’s fairness judgment of ML models. Diferent from Dodge et

al., we explore the efect of local explanation on calibrating trust for
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diferent predictions made by the same model, instead of calibrating

human perception of diferent models.

As we discussed, calibrating trust for individual predictions is

especially important in AI-assisted decision making scenarios. We

note several recent studies employed similar AI-assisted decision-

making setups and studied how various model related information

impacts trust and decision outcome [17, 27, 29, 30, 32]. Multiple

studies examined the efect of accuracy information [17, 30, 32], and

found people to increase their trust in the model when high accu-

racy indicators are displayed, relected both in subjective reporting

and more consistent choices with the model’s recommendations.

Closest to ours is the work by Lai and Tan [17], where they studied

the efect of showing prediction (in contrast to baseline without

AI assistance), accuracy and multiple types of explanation for AI

assisted decision-making in a deception-detection scenario. They

found that all these features increased people’s trust, measured

as acceptance of the AI’s recommendation as the inal decision,

and also the decision accuracy. However, a caveat in interpreting

the results is that the AI used in this task surpasses human perfor-

mance by a large margin (87% compared to 51%), so any features

that manifest the AI’s advantage could potentially increase people’s

willingness to trust the AI, which by default would improve the

decision outcome. In fact, observing the results reported by cor-

rect versus incorrect model decisions, all these features increased

participants willingness to accept the AI’s prediction regardless

of its correctness, which is evidence that they are inefective in

calibrating trust.

3 EXPERIMENT 1: EFFECT OF SHOWING AI
CONFIDENCE SCORE

In the irst experiment, we tested the following hypotheses with a

case study of AI-assisted prediction task:

• Hypothesis 1 (H1): Showing AI conidence score improves

trust calibration in AI such that people trust the AI more in

cases where the AI has higher conidence.

• Hypothesis 2 (H2): Showing AI conidence score improves

accuracy of AI-assisted predictions.

H2 is based on the assumption that if H1 holds, then humans

may be able to adopt the AI’s recommendation at the right time

and avoid following wrong recommendations. In addition, we also

explored the following research questions:

• Research Question 1 (RQ1): How does showing AI’s predic-

tion versus not showing, afect trust, accuracy of AI-assisted

predictions, and the efect of conidence score on trust cali-

bration?

While the former is a commonAI-assisted decision-making scenario

where the AI gives direct recommendations, the latter represents

a scenario where the human has to make blind delegation to the

AI without seeing its output. Blind delegation can happen in real-

world scenarios where delegation has to happen beforehand, or

when the AI decisions have latency. We were also interested in it as

a stricter test of trust and trust calibration, following the setup used

in Bansal et al. [2] to test mental modeling of error boundaries.

• Research Question (RQ2): How does knowing to have more

domain knowledge than the AI afect humans’ trust, accuracy

of AI-assisted predictions, and the efect of conidence score

on trust calibration?

To achieve these goals, we designed a prediction task in which

participants could achieve comparable performance to an AI model.

This task served as the foundation for both the irst and the second

experiment.

3.1 Experimental Design

3.1.1 Participants. We recruited 72 participants from Amazon Me-

chanical Turk for this irst experiment. 19 participants were women,

and 2 declined to state their gender. 16 participants were between

Age 18 and 29, 32 between Age 30 and 39, 15 between Age 40 and

49, and 9 over Age 50.

3.1.2 Task and Materials. We designed an income prediction task

where a participant was asked to predict whether a person’s an-

nual income would exceed $50K based on some demographic and

job information. The data used for the task was the 1994 Census

Data published as the Adult Data Set in UCI Machine Learning

Repository [10]. The entire dataset has 48,842 instances of surveyed

persons, each described by 14 attributes. These people’s annual

income, recorded as a binary value indicating above/below $50K,

was used as the ground truth for assessing the participants’ pre-

diction accuracy. ML models are trained based on a sample of the

dataset to make recommendations to the participants. We selected

8 most important features out of the 14 attributes (as determined

by the feature importance values of a Gradient Boosting Decision

Tree model over all the data) as features for the models, and as

proile features shown to the participants in the prediction trials.

The model was trained based on a 70% random split of the original

data set, while the prediction trials given to the participants were

drawn from the remaining 30%. Each prediction trial was shown

to the participants with the eight proile attributes in a table like

Figure 1.

We intended to create a setup close to real-world AI-assisted

decision scenarios where the humans have comparable domain

knowledge with the AI and are motivated to optimize the decision

outcome. We took two measures to improve the ecological validity.

First, the decision performance was linked to monetary bonus,

with a reward of 5 cents if the inal prediction was correct and a

loss of 2 cents if otherwise (in addition to a base pay of $3). Prior

research showed that such a reward design is efective in motivating

participants to optimize the decision outcome [2, 31]

Second, since MTurk workers were unlikely familiar with this

task, we boosted their domain knowledge and performance by a

training task (detailed in Section 3.1.4) and an additional piece of

informationÐthe third column in Figure 1 showing the chance a

person with that attribute-value earning income above $50K on

a scale of 0 to 10. This chance number was calculated from the

training dataset based on the percentages of people with the corre-

sponding attribute-value earning income above 50K. We multiplied

the percentages by 10 and rounded the number since prior work

shows that people understand frequencies better than probabilities

[17]. For example, in Figure 1, the chance value for occupation

indicates that 5 people out of 10 with the occupation of Executive &

Managerial have annual income above 50K. For continuous values

like Age and Years of Education, chance is calculated over a range,
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Figure 1: A screenshot of a proile table shown in the exper-

iment. The table lists eight attribute values and their corre-

sponding chances (out of 10) that a person with the same

attribute value would have income above $50K.

e.g. Age between 45 and 55. The speciic range is shown when the

participant hovered the mouse pointer on the chance number.

The chance number can be seen as analogous to learning mate-

rials that experts may have in real-world scenarios. For example,

decision-makers often have access to statistics of historical events.

However, these statistics do not obviate the need for human deci-

sion making to synthesize various information. This is also relected

in our task in that the chance values only show probabilities condi-

tioned on single attributes, and the participants still had to learn to

combine them to form a prediction based on all attributes.

3.1.3 Design. We designed three experimental factors to evaluate

the efect of showing conidence scores (H1 and H2), as well as to

explore the diference in showing prediction (RQ1) and in scenar-

ios where humans have additional knowledge (RQ2). This 2x2x2

design yields a total of 8 conditions, and we randomly assigned 9

participants to each condition.

Show vs. not show AI conidence. Studying the efect of con-

idence scores on people’s trust in AI and AI-assisted prediction

outcomes is the main goal of this experiment. Conidence is deined

as the model’s predicted probability for the most likely outcome.

For certain ML models, their predicted event probabilities may devi-

ate substantially from the true outcome probabilities (this is called

poor calibration). We checked our models and found that their

probabilities matched the outcome probabilities very well. Like the

chance number, we stated conidence probabilities as frequencies

in messages like this: "The model’s prediction is correct N times out

of 10 on individuals similar to this one", where N is the rounded

number of conidence probability multiplied by 10.

Show vs. not show AI prediction. We compared a scenario

where human had access to the AI’s prediction to assist their inal

decision, versus one where the human had to choose whether to

delegate the task to AI without seeing the prediction. The latter was

a stricter test of people’s trust and trust calibration. In both condi-

tions, feedback were provided on whether each trial was correct or

not, so participants would still experience the AI’s performance in

conditions where the AI’s predictions were not shown.

Full vs. partial model. We explored whether it made a difer-

ence when people knew they had access to more information than

the AI. This situation is common in real-world AI-assisted decision

making, as human experts often posses domain knowledge that

is not captured by the data to train the AI. For this purpose, we

trained a second partial model without the most important attribute,

marital status. Note our focus was not to test human trust on an

inferior model, as the accuracy of the partial model (83%) was only

slightly less than that of the full model (84%) when evaluated on a

reserved 20% test set. Instead, we were interested in the efect of

subjectively knowing to have more domain knowledge than the AI

on people’s trust and decision-making. Therefore, for participants

assigned to the partial model condition, we explicitly told them the

model was not considering the martial status attribute, and further

highlighted the point by distinguishing the marital status attribute

in the proile table with a description text "extra information for

you".

Since the focus of this research was on calibration of trust for

cases where AI prediction was more or less reliable, instead of

random sampling, we opted for stratiied sampling of cases across

diferent conidence levels. This would increase the number of

cases where the AI was less certain about, and allow us to bet-

ter compare the efect of studied features on cases with diferent

certainty levels. The conidence scores of the model for a binary

prediction ranged from 50% to 100%. We divided this range into ive

bins, each covers a 10% range, and randomly sampled 8 trials from

each bin for a participant. The order of these trials was randomized.

3.1.4 Procedure. Upon accepting the task on Amazon Mechanical

Turk, participants were brought to our experimental website. They

were asked to irst give their consent, then read the instruction

about the experiment, including the goal of the task and how to

read the proile table. The instruction was tailored for the condition

the participants were assigned to.

Next, they were given 20 training trials to practice. In each train-

ing trial, after participants gave their predictions, they were shown

the actual income category of that person as well as the AI’s pre-

diction, so that they could learn from the feedback and assess the

AI’s accuracy for diferent cases. They were also shown the AI’s

conidence level if they were assigned to the with-conidence condi-

tions. After inishing all training trials, participants were told their

accuracy and the model’s accuracy for the last 10 training trials.

They then proceeded to the 40 task trials, where they were asked

to make their own prediction irst. They were then shown the

version of AI information (with/without conidence, with/without

prediction) depending on which condition they were assigned to.

Then the participants were asked to choose their own or themodel’s

prediction as their inal prediction. Finally, a feedback message

was shown about whether the participant and the model were

correct. In the with-prediction conditions, if the participant’s own

prediction agreed with the AI’s prediction, we automatically took

that prediction as the inal prediction. A 10-second count down

was imposed on each trial before the prediction submission button



Efect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making FAT* ’20, January 27ś30, 2020, Barcelona, Spain

was enabled, encouraging participants to pay more attention in

each decision. After the 40 task trials, participants completed a

demographic survey.

As discussed, participants received a base pay of $3 in addition

to the performance-based bonus payment (plus 5 cents if correct

and minus 2 cents if wrong). On average, each participant received

$1.16 bonus, and a total of $4.16 compensation for completing the

half-hour long experiment.

3.2 Results

3.2.1 Trust. Prior work suggests that subjective self-reported trust

may not be a reliable indicator for trusting behaviors [16, 29], which

are what ultimately matter in AI-assisted decision tasks. Therefore,

following recent studies [17, 27, 30], we measured participants’

trust in the AI by two behavioral indicators:

1) Switch percentage, the percentage of trials in which the par-

ticipant decided to use the AI’s prediction as their inal prediction.

In conditions where the AI’s prediction was shown, it was the

percentage of trials using the AI’s prediction among trials where

participants and the AI disagreed. In conditions where the AI’s

prediction was not shown, it was the percentage of trials in which

participants chose to delegate the prediction to the AI among all

trials.

2) Agreement percentage, the percentage of trials in which the

participant’s inal prediction agreed with the AI’s prediction.

The main diference between the two measures was that in the

with-prediction conditions, the agreement percentage would count

the trials in which the participant’s and the AI’s predictions agreed

and automatically counted as the inal decision; whereas the switch

percentage would only consider cases where they disagreed and

had to make an intentional act of switching. Therefore, we consider

switch percentage to be a stricter measure of trust, even though

agreement percentage was used in prior research [17].

Figure 2 shows the switch percentage across the prediction and

conidence factors. The result that the orange error bars (w/ coni-

dence conditions) are higher than the green error bars (w/o con-

idence conditions) indicates that the participants switched to the

AI’s predictions (or decided to use AI in the without-prediction

conditions) more often when the AI’s conidence scores were dis-

played. A four factor ANOVA, conidence × prediction × model

completeness × model conidence level, conirmed that the main

efect of showing conidence scores was signiicant, F (1, 64) = 4.64,

p = .035.

The other two factors, prediction and model completeness, did

not have any signiicant main efect or interaction, partially answer-

ing RQ1 and RQ2. As can be seen in Figure 2, showing prediction

did not afect switch percentages signiicantly, F (1, 64) = 0.217,

p = .643. The insigniicant efect of model completeness, F (1, 64) =

0.07, p = .792, suggests that participants did not distrust the partial

model. Given that the two models had similar accuracy, participants

acted rationally.

Figure 3 further examines how showing conidence calibrated

trust for cases of diferent conidence levels. The igure shows that

when the AI’s conidence level was between 50% and 80%, there

was not much diference between with- and without-conidence

conditions. In fact, participants seemed to trust the model less
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Figure 2: Switch percentage, measured as how often partic-

ipants chose the AI’s predictions as their inal predictions,

across conidence and prediction conditions. The dots indi-

cate the mean percentages. All error bars in this and subse-

quent graphs show +/- one standard error.

when AI conidence was shown and was less than 60%, But when

the AI’s conidence level was highÐabove 80%Ðparticipants’ trust

was signiicantly enhanced by seeing the conidence scores. This

calibration of trust was conirmed by a statistically signiicant in-

teraction between showing conidence and the AI’s conidence

level, F (4, 256) = 15.8, p < .001. Further, when the AI conidence

score was not shown, participants’ trust was generally maintained

around the same level across trials of all conidence levels. This was

conirmed by an ANOVA on the without-conidence conditions:

main efect of conidence level was not signiicant, F (4, 128) = 1.84,

p = .126.

To answer RQ1, the trust calibration efect by showing coni-

dence score held regardless of whether the model prediction was

shown. In other words, high conidence scores encouraged partici-

pants to delegate the decision task to the AI even without seeing

its predictions. This was conirmed by the insigniicant three-way

interaction between conidence, prediction, and conidence level,

F (4, 256) = 0.266, p = .899.

A similar pattern was observed in the other trust measure, agree-

ment percentage, as shown in Figure 4. When the conidence score

was shown, the diference in the agreement percentage between

high-conidence levels and low-conidence levels became more

pronounced. The calibration efect of conidence score on the agree-

ment percentage, as indicated by the interaction between con-

idence and conidence levels, was signiicant, F (4, 256) = 3.82,

p = .005. Similarly, this calibration efect held in scenarios of show-

ing and not showing AI prediction, F (4, 256) = 0.331, p = .857. H1

was thus fully supported.

3.2.2 Accuracy. During the experiment, we collected three types

of predictions: (a) participants’ own predictions before they saw

any information from the AI, (b) the AI’s predictions, and (c) the

participants’ inal prediction after seeing AI information, which we

call AI-assisted prediction. We measured the accuracy for each type

of prediction. On average, the participants’ own accuracy was 65%,

with only 14 of 72 participants under 60%, while the AI accuracy

was 75% (note this number is lower thanmodel accuracy on test data

because of stratiied sampling for experiment trials). These accuracy
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Figure 4: Agreement percentage, measured as how often par-

ticipants agree with the model’s prediction, across coni-

dence levels and various conditions.

numbers did not show statistically signiicant variations across

experimental conditions. Thus, in our task, AI had an advantage

over the humans but not by much. This is in contrast to [17] where

the humans performed substantially worse than the AI (by 37%).

After conirming that displaying conidence both improved over-

all trust and helped calibrate trust with conidence levels, we inves-

tigated whether this translated to improvement in the accuracy of

the AI-assisted predictions. Figure 5 shows this AI-assisted accuracy
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Figure 5: Accuracy of the human andAI-assisted predictions

across conditions.

across conditions. It suggests that there was no signiicant difer-

ence in AI-assisted accuracy across the prediction and conidence

conditions. Indeed, an ANOVA showed that only the AI conidence

level (F (4, 256) = 79.6, p < .001) and its interaction with model

completeness (F (4, 256) = 2.95, p = .021) had signiicant efect.

Furthermore, we also analyzed the diference between AI-assisted

accuracy and AI accuracy, and none of the factors showed signii-

cant efects. We originally expected that the AI-assisted prediction

(i.e. human-AI joint decision) would be more accurate than the AI

alone when the AI conidence was low, but that did not turn out to

be true.

The fact that showing conidence improved trust and trust cali-

bration but failed to improve the AI-assisted accuracy is puzzling,

and it rejects our H2. This phenomenon could be explained by

the correlation between model decision uncertainty and human

decision uncertainty, because trials where the model prediction had

low conidence were also more challenging for humans. This can

be seen in Figure 6 that the humans were less accurate than AI

across all conidence levels, although the diference is smaller in the

low conidence trials. Therefore, even though showing conidence

encouraged participants to trust the AI more in high-conidence

zone, the number of trials in which the human and the AI disagreed

in these cases were low to begin with, while in the low-conidence

zone, human’s predictions were not better substitutes for AI’s. A

caveat to interpret the results here is that if the correlation between

human and model uncertainty decreases, for example if the human

expert and the model each has a unique set of knowledge, it is

possible that better calibration of trust with the model certainty

could lead to improved AI-assisted decisions.

In summary, results of Experiment 1 showed that displaying

conidence score improved trust calibration (H1 supported) and

increased people’s willingness to rely on AI’s prediction in high-

conidence cases. This trust calibration efect held in AI-assisted

decision scenarios where the AI’s recommendation was shown, and

in scenarios where people had to make blind delegation without
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Figure 6: Diference between human and AI accuracy across

conidence levels.

seeing the AI’s recommendation (RQ1). However, in this case study,

trust calibration did not translate into improvement in AI-assisted

decision outcome (H2 rejected), potentially because there was not

enough complementary knowledge for people to draw on.While we

explored a scenario where participants knew they had additional

knowledge that the AI did not have access to, it did not make

signiicant diference in the AI-assisted prediction task (RQ2)

4 EXPERIMENT 2: EFFECT OF LOCAL
EXPLANATION

The second experiment examined the efect of local explanations.

It had the same setup as Experiment 1, but instead of showing

conidence scores, we showed local explanations for each AI predic-

tion. The main hypothesis we wanted to test was that: because local

explanation is suggested to help people judge whether to trust a par-

ticular prediction [28], and it could potentially expose uncertainty

underlying an AI prediction, showing explanation could support

trust calibration (H3) and improve AI-assisted predictions (H4).

4.1 Experiment Setup

We developed a visual explanation feature like the one in Figure 7.

This visualization explains a particular model prediction by how

each attribute contributes to the model’s prediction. The contribu-

tion values were generated using a state-of-the-art local explanation

technique called Shapley method [19].

Experiment 2 was carried out only under the full-model, with-

prediction condition. We only tested the full-model condition be-

cause the irst experiment did not show signiicant efect of the

model completeness. We only tested the with-prediction condition,

because even if the prediction was not shown, participants could

still derive them from the explanation graphsÐif the sum of the

orange bars is longer than the sum of the blue bars, the model

predicts income above 50K and vice versa.

Nine participants were recruited for Experiment 2. Four of them

were women. One participant was between Age 18-29, four between

Age 30 and 39, two between 40 and 49, and two above 50.

4.2 Results

The goal of Experiment 2 was to test the efect of local explanation

on people’s trust in the AI and the AI-assisted decision outcomes,

Figure 7: A screenshot of the explanation shown for a par-

ticular trial. Participants were told that orange bars indicate

that the corresponding attributes suggest higher likelihood

of income above 50K, whereas blue bars indicate higher like-

lihood of income below 50K. The light blue bar at the bottom

indicates the base chanceÐa person with average values in

all attributes is unlikely to have income above 50K.

as compared to baseline condition and the efect of conidence

scores. Therefore, for the subsequent analysis, we combined the

data collected from this experiment with those from the baseline

and with-conidence condition of Experiment 1 (all conditions are

full-model, with-prediction).

4.2.1 Trust. Figure 8 shows that unlike conidence, explanation did

not seem to afect participants’ trust in the model predictions across

conidence levels. As discussed before, indicated by the orange bars,

showing model conidence encouraged participants to trust the

model more in high-conidence cases (note that the statistics are

not identical to those in Figure 3 because results here only included

data in the full-model, with-prediction condition), but the results for

explanation (blue error bars) did not show such a pattern. Instead,

the switch percentage seemed to stay constant across conidence

levels similar to that in the control condition. Results of an ANOVA

supported these observations: the model information factor (no info

vs. conidence vs. explanation) had a signiicant efect on the switch

percentage, F (2, 24) = 4.17, p = .028, and its interaction with model

conidence level was also signiicant, F (8, 96) = 3.81, p < .001. A

Tukey’s honestly signiicant diference (HSD) post-hoc test showed

that the switch percentage in the conidence condition was signii-

cantly higher than those in the baseline condition (p=.011) and the

explanation condition (p < .001), but the explanation condition was

not signiicantly diferent from the baseline (p = .66).

The agreement percentage showed a similar efect, albeit less

pronounced. As shown in Figure 9, the baseline condition (green)

and the explanation condition (blue) had similar agreement per-

centages, while the with-conidence condition (orange) had higher

percentage when the conidence level was above 70%. Nonetheless,

this efect was not signiicant on this measure, F (2, 24) = 0.637,

p = .537. Taken together,H3 was rejected as we found no evidence

that showing explanation was more efective in trust calibration

than the baseline.

4.2.2 Accuracy. In Experiment 2, the average Human accuracy

was 63%, while the AI’s accuracy was again 75% due to stratiied

sampling. Figure 10 examines the efect of explanation on the accu-

racy of AI-assisted predictions. Similar to Experiment 1, we did not

ind any signiicant diference in AI-assisted accuracy across model
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Figure 9: Agreement percentage across conidence levels and

model information conditions.

information conditions, F (2, 24) = 0.810, p = .457. If anything,

there was a reverse trend of decreasing the AI-assisted accuracy by

showing explanation. H4 was thus also rejected.

Taken together, the results suggest a lack of efect of local expla-

nations on improving trust calibration and AI-assisted prediction.

Our results appeared to contradict conclusions in Lai and Tan’s

study [17], which showed that explanations could improve peo-

ple’s trust and the joint decision outcome. But a closer look at Lai

and Tan’s results revealed a trend of indiscriminatory increase in

trust (willingness to accept) whether the AI made correct or incor-

rect predictions, suggesting similar conclusion that explanations

are inefective for trust calibration. However, since in their study

the AI outperformed human by a large margin, this indiscrimina-

tory increase in trust improved the overall decision outcome. It is
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Figure 10: Accuracy of the AI-assisted predictions across

conditions.

also possible in that setup explanations could display the superior

capability of the system and more efectively enhance the trust.

In the next section, we discuss the implications of diferences in

the AI-assisted decision task setups and the limitations of local

explanations for trust calibration.

5 DISCUSSIONS

We discuss broader implications of this case study for improving

AI-assisted decision-making.

5.1 Mental Model of Error Boundaries

Consistent with prior work on trust calibration for automation [20],

we show that case speciic conidence information can improve

trust calibration in AI-assisted decision making scenarios. In these

scenarios, showing conidence is potentially more helpful than

showing model-wide information such as accuracy. Bansal et al. [2]

mentioned that well-calibrated conidence scores can potentially

help people form a good mental model of AI’s error boundariesś

understanding of when the AI is likely to err. We recognize that we

did not measure people’s mental model directly but instead focus-

ing on behavioral manifestation of trust calibration. Developing a

good mental model is indeed a higher target, which requires one to

construct explicit representation of error boundaries. With a good

mental model, one may be able to more eiciently calibrate trust

without the needs to access and comprehend conidence informa-

tion for every prediction. A recent paper by Hofman et al. [14]

recognizes that forming a good mental model of AI is the key to ef-

fectively appropriating trust and usage. The paper also calls out the

need to develop methods to measure the soundness of users’ mental

model, and suggests references from methods in cognitive psychol-

ogy. Using these methods, future work could examine whether

having access to conidence information could efectively foster a

mental model of error boundaries.

However, showing conidence scores has its drawbacks. It is well

understood that conidence scores are not always well calibrated

in ML classiiers [23]. Also a numeric score may not be interpreted

meaningfully by all people, especially in complex tasks. Moreover,

conidence scores alone may be insuicient to foster a good mental



Efect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making FAT* ’20, January 27ś30, 2020, Barcelona, Spain

model, since it would require people to extract explicit knowledge

from repeated experience. Future work could explore techniques

to provide more explicit description of error boundaries or low-

conidence zones, and study their efect on trust calibration and

AI-assisted decision making.

5.2 Alignment of Human’s and AI’s Error
Boundaries

Our study found little efect of conidence information on improving

AI-assisted decision outcome, even though it improved trust calibra-

tion. A potential reason is that, in our setup, the error boundaries of

human’s and AI’s were largely aligned. In other words, in situations

where the AI was likely to err, the humans were also likely to err.

Participants recruited from Mechanical Turk are not experts in an

income prediction task. We attempted to inject domain knowledge

by providing participants with chance numbers for each feature,

while the model was trained on the same data with the same set

of features. While we explored conditions where the human had

access to an additional key attribute, it might not have created suf-

icient advantage for the human. We envision in situations where

the AI and the human have complementary error boundaries, trust

calibration may be more efective in improving AI-assisted decision

outcomes. Future work should test this hypothesis.

Results of our study show some discrepancies with prior works,

especially Lai and Tan’s study [17]. We recognize the diferences be-

tween the setups. While in our study the human and AI had largely

aligned knowledge and performance, in [17] the humans had sig-

niicantly worse performance in the deception detection task. We

may consider the setup in [17] to be a situation where the human

and the AI not only have unaligned, but also unequal error zones.

These comparisons highlight the problem of generalizability from

studies of AI-assisted decision making tasks without explicitly char-

acterizing or controlling for the human’s performance proile and

its diference from the AI’s. Our results suggest that such character-

ization or experimental control may need to go beyond the overall

performance, but also consider the alignment of error boundaries

between the human and the AI. While how to characterize the level

of error boundary alignment poses an open question, we invite the

research community to consider it in order to collectively produce

uniied theories and best practices of AI-assisted decision making.

5.3 Explainability for Trust Calibration

Explainable Artiicial Intelligence is a rapidly growing research

discipline [1, 4, 11, 22]. The quest for explainability has its roots in

the growing adoption of high-performance "black-box" AI models,

which spurs public concerns about the safety and ethical usage

of AI. Given such "AI aversion", research has largely embraced ex-

plainability as a potential cure for enhancing trust and usage of AI.

Empirical studies of human-AI interaction also tend to seek vali-

dation of trust enhancement by explainability, albeit with highly

mixed results. But in practice, there are diverse needs for explain-

ability, as captured by [1, 9], including scenarios for ensuring safety

in complex tasks, guarding against discrimination, and improving

user control of AI. In many of these scenarios, one would desire sup-

port for efectively and eiciently identifying errors, uncertainty,

and mismatched objectives of AI, instead of being persuaded to

Figure 11: Screenshots of explanation for cases where the

model had low conidence.

over-trust the system. Therefore, we highlight the problem of trust

calibration and designed a case study to explore whether a popular

local explanation method could support trust calibration.

Unfortunately, we did not ind the explanation to create per-

ceivable efect in calibrating trust in AI predictions. This stands in

contrast to the indings of [28] where explanations helped expose

a critical law in the model (treating snow as Husky), which could

help the debugging work. We note the diference in our setupśthe

classiication model may not have obvious laws in its overall logic

and trust calibrationmay require more than recognizing laws in the

explanation. Figure 11 lists two examples of explanation shown for

a low-conidence prediction. In theory, prediction conidence could

be inferred by summing the positive and negative contributions

of all attributes. If the sum is close to zero, then the prediction is

not made with conidence. However, we speculate that this method

of inference might not have been obvious for people without ML

training. Instead, one may simply focus on whether the top features

and their contributions are sensible. In these two examples, marital

status is considered as the main reason for the model to predict

higher income. This is a sensible rationale that would frequently

appear in explanations regardless of prediction conidence. It is also

possible that the explanation created information overload [27]

or are simply ignored by some participants. We acknowledge that

some of these problems may be speciic to the visual design we

adopted. It is also possible that the underlying explanation algo-

rithm has its limitation in faithfully relecting prediction certainty.

Nonetheless, our study highlights the importance of studying how

an AI explanation design is perceived by a particular group of users,

for a particular goal.

There are many other explanation methods and techniques, and

it is possible that some are more efective in calibrating trust or

exposing model problems. For example, Dodge et al. [8] compared

the efect of diferent explanation methods in exposing discrimina-

tion of an unfair model. The study showed that sensitivity based

explanation, which highlights only a small number of features that,

if changed, could "lip" the model’s prediction, is perceived as more

alarming and therefore more efective at calibrating fairness judg-

ment than methods that list the contribution of every feature. A

study conducted by Cai et al. [3] found that comparative expla-

nation, by comparisons with examples in alternative classes, can

lead to better discovery of the limitations of the AI, compared to

normative explanation that describes examples in the intended

class. Although these results imply that some explanation meth-

ods may better serve the goal of trust calibration, we know little

about the mechanism, neither from the algorithmic side on what

makes an explanation technique sensitive to the trustworthiness of
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a model or prediction, nor from the human perception side on what

characteristics of explanations are associated with trust or distrust.

We therefore invite the research community to explore AI ex-

plainability speciically for trust calibration, both at the model level

and the prediction level. As a starting point, explanation methods

and techniques could target a diferent set of goals in addition to

metrics suggested in the current literature such as faithfulness,

improved human understanding or acceptance [9]. For example,

explanation that could efectively support trust calibration at the

model level should be sensitive to the model performance, while

explanation that support trust calibration at the prediction level

should be sensitive to the prediction uncertainty. Ultimately, trust

resides in human perception and the efect on trust calibration

should be evaluated by having targeted users in the loop. Our study

provides an example of how to conduct such an evaluation for trust

calibration.

6 LIMITATIONS

One limitation of our study is that our participants are not experts in

income prediction. This problem was mitigated by the training task

and the access to statistics of the domain (the chance column). The

fact that participants’ accuracy was only 10% less than the model

trained on a large dataset suggests that these domain-knowledge

enhancement measures were efective. Although it is desirable

to conduct the experiment with real experts, it can be extremely

expensive. Our approach can be considered as "human grounded

evaluation" [9], a valid approach by using lay people as "proxy" to

understand the general behavioral patterns.

Another limitation is that we use a contrived prediction task

where the participants would not be held responsible. We miti-

gated the problem by introducing an outcome based bonus reward,

which prior studies suggest could efectively motivate optimizing

the decision-making. While future study could experiment with

scenarios with more signiicant real-world impact, we note that

they have to be executed with caution to avoid ethical concerns.

Lastly, themethod thatwe proposed for calibrating trustÐshowing

model prediction conidence to the decisionmakerÐclearly depends

on the model’s predicted probabilities being well calibrated to the

true outcome probabilities. There are certain machine learning

models that do not meet this criterion such as SVM, though this

issue can be potentially addressed through Platt Scaling or Isotonic

Regression [24].
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