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Abstract:	knowledge	acquisition	is	critical	for	AI	models.	However,	the	AI	community	have	largely	
overlooked	the	opportunities	for	interactions	between	AI	models	and	human	knowledge	sources,	which	are	
currently	limited	to	providing	simple	labels	as	oracles.		This	limited	perspective	not	only	restricts	the	
productivity	of	AI	model	development,	but	also	hinders	the	consideration	of	important	issues	in	the	
procedures	and	outcomes	of	human	knowledge	acquisition	such	as	data	biases	and	ethics.		We	argue	that	
for	an	AI	system	with	the	goal	of	optimizing	performance	and	user	experience,	it	could	leverage	diverse	HCI	
methods	and	HCI	perspectives	to	interact	with	human	knowledge	sources.	We	conduct	an	analysis	on	a	
taxonomy	of	knowledge	acquisition	problems	for	AI,	and	mapping	it	with	HCI	methods	for	acquiring	
knowledge	about	a	domain	or	stakeholders.	We	present	a	provocative	idea	of	a	future	AI	that	embodies	
itself	as	an	HCI	researcher	bot	to	interact	with	various	stakeholders.	
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To put it simply, machine learning (ML) is the process of using standardized learning algorithms to learn from task 
specific data or knowledge. Despite the enormous effort by the AI research community on advancing the capabilities 
of learning algorithms, obstacles persist. in the practices of AI application development, the critical blocker is often the 
acquisition of task specific knowledge, as illustrated in the issues of expensive, insufficient, and noisy labeled data, and 
the time-consuming processes of data-cleaning and feature engineering.    

The HCI community have been responding to these issues since 2000s (Fails and Olsen, 2003). Contrary to the classic 
AI goal of automation, the alternative solution is an emphasis on human-in-the-loop approaches and a collaborative 
perspective by viewing "learning algorithms as interacting with both computational agents and human agents to 
optimize learning behaviors through these interactions" (Holzinger, 2016). One example is interactive machine learning 
systems, where a domain expert can make rapid and incremental model updates by, e.g., iteratively supplying small 
batches of training examples (Amershi et al., 2014).  Another example is interfaces supporting active learning, where 
the ML algorithm learns by actively requesting specific information from the humans (Cakmak and Thomaz, 2012).  

A recent effort made jointly by some AI and HCI researchers is a call for paradigm shift from machine learning to 
machine teaching (Zhu, 2015; Simar et al., 2017). Instead of treating the humans in the loop as oracles that perform 
mechanical tasks, they should be seen as teachers who impart task specific knowledge to the learning 
algorithms.  Machine teaching research should thus put an emphasis on interfaces supporting the teachers' 
interactions with ML models and expression of knowledge, and making the teaching experience more productive and 
engaging. While the "teacher" role is a valuable change of perspective to start thinking about more meaningful and 
holistic interactions between humans and ML models, we argue that the teacher role has limitations. It assumes that 
there are dedicated teaching personnel in the model development process. While this may be a proper description of 
domain experts participating as members of AI development teams, it may be less applicable to other, more transient 
human roles that ML models can acquire knowledge from, such as crowd workers, end users and the many people 
who may be involved in the task but not available to work directly with the model. Moreover, "teaching" implies 
teacher-initiated interactions and puts the ML model in a passive "learner" role, and presumes knowing of teaching 
goals and learner status. This, again, may be less applicable to the other categories of human-in-the-loop roles.  

In this extended abstract, we start developing requirements for a general interface between ML models and diverse 
human knowledge sources, and envision how an AI that aims at continuous self-learning for improvement of system 
performance and user experience should embody itself to interact with targeted users, domain experts and diverse 
stakeholders.  This vision is motivated by the prediction of three upcoming trends of AI:  
• First, as the learning capabilities of AI algorithms evolve, AI should learn from rich forms of human knowledge 

beyond the current practices of instance labeling (Ratner et al., 2016), which is highly constrained and inefficient, 
and fails to make use of more tacit knowledge such as heuristics, rationales and common sense (Polanyi, 1962).  

• Second, as the model construction and optimization become increasingly automated (Biem et al., 2015), AI will 
take self-initiative to acquire human knowledge instead of relying on model developers. Meanwhile, to avoid 
catastrophic risks, the autonomous AI should actively seek control from and co-operate with humans. So the 
human knowledge is not only a source of learning materials, but also for evaluation, validation and for the AI to 
build common ground with humans, and thus should be sought carefully and frequently.   

• Lastly, AI applications will become increasingly versatile and composeable.  For example, an autonomous car 
would require training interconnected ML models for visual, reasoning and motor skills. It could benefit from 
having a common interface to interact with different human knowledge sources for different ML problems. 

We argue the premise for such an interface is a toolbox of knowledge elicitation methods with the goal of learning the 
task domain, understanding diverse stakeholders, and ultimately, optimization centered around user needs and 
societal benefits. HCI is a discipline that predominately focuses on developing such a toolbox (Olsen and Kellogg, 
2014). By considering the types of knowledge that current or near-future ML models need to acquire from human 
knowledge sources, ranging from explicit to tacit, and the types of human roles involved, we propose a taxonomy of 
knowledge elicitation for ML models. We then attempt to map HCI methods to the same taxonomy (Figure 1). This 
gives us a starting point to consider interactions for acquiring human knowledge for different kinds of ML problems.  



With that, we invite the idea of a future AI that embodies itself as an HCI researcher bot, and that selectively uses HCI 
methods to acquire system knowledge from its targeted users, domain experts and other stakeholders.  We think this 
AI entity not as a replacement for an HCI expert, but rather as an embodied extension of the human HCI experts. 
However, we would like to leave out the discussions on the system operation and its relation with human HCI 
researchers, i.e. whether it is an autonomous system, a delegation, or a hybrid co-investigator, but focus on 
considering its potentials as an interface that can potentially satisfy the above requirements---eliciting rich forms of 
knowledge, taking self-initiative, and sharing a common form supporting different ML processes. This interface could 
help us rethink the interactions between AI models and human knowledge sources. Besides harnessing the numerous 
lessons from decades of HCI research on "ways of knowing" (Olsen and Kellogg, 2014), it redefines the relationship 
between AI models and human knowledge sources not as algorithms and oracles, nor students and teachers, but 
investigators (whose ultimate goal is to optimize the system) and informants. Such an embodiment also encourages 
the adoption of HCI best practices on how to interact with human subjects, including the design of “probes” (Boehner 
et al., 2007) and study procedures, ethics considerations, and sampling methods. 

 
Figure 1. A taxonomy of knowledge elicitation for ML models and mapping of HCI methods 

In the following, we briefly discuss four cases of ML knowledge acquisition problems in different places of the 
taxonomy, and envision possible solutions provided by the HCI researcher bot.  

Learning instance labels 
This is currently the most common ML tasks as represented by supervised learning algorithms that infer a predictive 
function from a set of labeled instances. This maps directly to experimental and survey methods where the 
measurement (labels) is explicitly defined (i.e., as “ground truth”) and data points (training data) are collected for 
quantitative analysis (modeling). In fact, data scientists frequently collect labeled data by designing experiments or 
questionnaires (broadly, including simple questions for label selection).   

To acquire the knowledge about instance labels, the bot can replace the current data collection efforts of data 
scientists, by performing experiment design and execution, and administration of surveys. Recent critical works on 
data scientists’ data collection practices, including its situated and contextualized nature as “design work” (Feinberg, 
2017) and the pervasive problem of uncertainty (Boukhelifa, 2017) elucidate some challenges in the bot’s work. 

Schema and feature learning 
The ML problem in this category is to learn descriptive knowledge of a task domain, such as a taxonomy or action 
space, or the feature space. For example, in developing a virtual assistant AI system, the first task is to define the 
schema of tasks that users may need assistance with. This is currently done by either expert input, clustering or 
pattern extraction algorithms, or a combination of both (e.g. Hoque and Carenini, 2015).  



Defining domain schema and mapping action space are familiar tasks for HCI researchers. The bot can perform 
observational studies, task analysis and contextual inquiry with targeted users. The bot can also request to access 
behavioral data from existing systems or tasks. It is noteworthy that there is a long tradition of research on analytical 
methods for task analysis and inducing concept schema from qualitative data (Rossen and Carroll, 2002; Adams et al., 
2008), and there is an ongoing discussion on the complementary offering of these approaches (Baumer et al., 2016; 
Muller et al., 2016). These discussions may inform how the bot should construct its data collection protocols and make 
situated interpretation of the task domain representation.  

Learning to reason 
Learning to perform complex reasoning tasks is in the current frontier of AI research to achieve higher level of 
intelligence. It requires formalizing the often-tacit knowledge of human reasoning processes. The formalization needs 
to be performed in at least two areas. One is the construction of detailed domain knowledge, such as a knowledge 
graph. The other is to learn the inference procedures.  While human-in-the-loop systems of this kind are still rare, two 
relevant areas explored human knowledge acquisition methods: 1) One is expert systems that proliferated in 1980s 
that aim to emulate reasoning processes of human experts with static rules. To understand how experts make 
decisions, a combination of interviews, focus group, scenario exploration and observations are adopted (Cooke 1994). 
These methods are often used for formative research in HCI, which aims to understand the latent user needs, 
behaviors and motivation. 2) Another relevant area that AI researchers started to explore is crowdsourcing knowledge 
representations (e.g., Witbrock et al., 2013). This has proved to be a challenging task to achieve accuracy, coverage 
and efficiency without carefully designed questions and iterated data-collection with quality checks. A critical and 
under-explored issue is biases in the knowledge representation following bias-insensitive data collection procedures, 
for which we expect some of the HCI traditions, such as feminist HCI (Bardzell and Bardzell, 2011) and Indigenous 
methodologies (Kovach, 2009), would be able to provide solutions.  

We envision the capabilities to learn from human knowledge sources to perform reasoning tasks as a critical 
requirement for future (general) AIs. This opens up a challenging design space for knowledge acquisition interfaces of 
ML models, as the targeted knowledge moves to the tacit end of the knowledge spectrum, and the data space 
becomes more open-ended. It requires the bot to be versatile in using diverse research methods and adept in 
designing study protocols and effective "probes".  

Value learning 
On the very tacit end of the knowledge spectrum, we consider the emerging AI topic of the "value alignment problem" 
and the following needs for value learning (Greene et al., 2016; Hadfield-Menell et al., 2016). There is a growing 
interest in both the scientific community and the public to ensure the goals of autonomous AI systems to be aligned 
with human values (Russell et al., 2017). Given the complexities of human value systems, researchers started to 
explore learning tacit values from human actions. Because it is extremely hard to obtain large amounts of human 
choice data bounded by value structures, some researchers proposed novel data collection methods to "crowdsource" 
choices from speculation of fictional scenarios. For instance, the “trolley problem” is a widely used scenario of ethical 
dilemma, for which large crowdsourced datasets have been created in the hope of informing the development of 
“moral machines” (Bonnefon et al. 2016; Shariff et al. 2017).  

In line with these ideas, speculative methods in HCI has a tradition of focusing on inquiries about values associated 
with new technologies. Recently, Muller and Liao (2016) proposed using design fictions as probes, participatory 
construction and group co-creation to inquire about value issues around AI technologies (for related approaches, see 
Sorell and Draper, 2014; Cheon and Su, 2016). The bot can use these tools, for example, by generating contextualized 
design fictions that are formatted for value elicitation (e.g., strategically incomplete decisions, contrasting values). 
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