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ABSTRACT

Ensuring fairness of machine learning systems is a human-in-the-
loop process. It relies on developers, users, and the general public to
identify fairness problems andmake improvements. To facilitate the
process we need efective, unbiased, and user-friendly explanations
that people can conidently rely on. Towards that end, we conducted
an empirical study with four types of programmatically generated
explanations to understand how they impact people’s fairness judg-
ments of ML systems. With an experiment involving more than
160 Mechanical Turk workers, we show that: 1) Certain explana-
tions are considered inherently less fair, while others can enhance
people’s conidence in the fairness of the algorithm; 2) Diferent
fairness problemsśsuch as model-wide fairness issues versus case-
speciic fairness discrepanciesśmay be more efectively exposed
through diferent styles of explanation; 3) Individual diferences,
including prior positions and judgment criteria of algorithmic fair-
ness, impact how people react to diferent styles of explanation. We
conclude with a discussion on providing personalized and adaptive
explanations to support fairness judgments of ML systems.

CCS CONCEPTS

· Human-centered computing→ Empirical studies in HCI.

KEYWORDS

Fairness, Machine Learning, Explanation, Empirical Studies

ACM Reference Format:

Jonathan Dodge, Q. Vera Liao, Yunfeng Zhang, Rachel K. E. Bellamy,
and Casey Dugan. 2019. Explaining Models: An Empirical Study of How Ex-
planations Impact Fairness Judgment. In 24th International Conference on In-

telligent User Interfaces (IUI ’19), March 17ś20, 2019, Marina del Rey, CA, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3301275.3302310

1 INTRODUCTION

Increasingly, important decisions that impact human lives and so-
cietal progress are supported by machine learning (ML) systems.
Examples where ML systems are used to make decisions include
hiring, marketing, medical diagnosis, and criminal justice. This
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trend gives rise to concerns about algorithm fairnessÐor possi-
ble discriminatory consequences for certain groups of individuals.
Machine learning algorithms are trained based on data from past
decisions, decisions which may have themselves been biased and
discriminatory. Research shows that by optimizing for the unitary
goal of accuracy, ML algorithms trained on historical data not only
replicate, but may amplify existing biases or discrimination [40].
The possibility of spiraling discriminatory consequences is driving
a distrust and łfear of AIž in public discussions (e.g., [1, 2]).

There is a growing body ofwork on developing non-discriminatory
ML algorithms (e.g., [16, 17, 38]), equal attention has not been paid
to the human scrutiny necessary to identify and remedy fairness
issues. The need for such research is highlighted by recent studies,
which show that algorithmic fairness often may not be prescrip-
tively deined, but is multi-dimensional and context-dependent [14].
Public scrutiny of the usage of risk assessment algorithms in the
criminal justice system [3, 21] brings attention to the need to
progress the accountability and fairness of such algorithms.

Accurately identifying fairness issues in ML systems is extremely
challenging, however. Most ML algorithms aim to produce only
prediction or decision outcomes, while humans tend to rely on
information about decision-making processes to justify the decisions
made. ML algorithms are often seen as łblack boxesž, where one
can only see the output and make a best guess about the underlying
mechanisms. This problem is further exacerbated by the popularity
of deep learning algorithms, which are often unintelligible even
for experts. This lack of transparency drives a sweeping call for
explainable artiicial intelligence (XAI) in industry, academia, and
public regulation. For example, the EU General Data Protection
Regulation (GDPR) requires organizations deploying ML systems
to provide afected individuals with meaningful information about
the logic behind their outputs.

Critically, explanations are not just for people to understand
the ML system, they also provide a more efective interface for the
human in-the-loop, enabling people to identify and address fairness
and other issues. When people trust the explanation, it follows that
they would be more likely to trust the underlying ML systems.

Much recent research is dedicated to the generation of explana-
tions in various styles, includingmodel-agnostic approaches [26, 30]
applicable to any ML algorithm. However, this growing body of
research is criticized for łapproaching this [XAI] challenge in a vac-
uum considering only the computational problemsž [27] without
the quintessential understanding of how people perceive and use
the explanations.
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In this paper, we conduct an empirical study on how people
make fairness judgments of ML systems and how explanation im-
pacts that judgment. We aim to highlight the nuances of such judg-
ments, where there are diferent types of fairness issues, diferent
styles of explanation, and individual diferences, to encourage fu-
ture research in this area to take more user-centric and personalized
approaches.

Speciically, we identify four styles of explanation based on prior
XAI work and automatically generate them for a ML model trained
on a real-world data set. In the experiment, we explore the efective-
ness of explanations in exposing two types of fairness issuesśmodel-
wide unfairness produced by biased data, and fairness discrepancies
in cases from diferent regions of the feature space. Our user study
demonstrates that judging fairness is not only inluenced by expla-
nation design, but also an individual’s prior position on algorithmic
fairness, including both the general trust of ML systems for deci-
sion support and one’s position on using a particular feature. We
also present user feedback for the four styles of explanation. Our
results provide insights on the mechanisms of people’s fairness
judgment of ML systems, and design guidelines for explanations to
facilitate fairness judgment making. We irst review relevant work,
then present the study overview and research questions.

2 BACKGROUND

2.1 Fairness of Machine Learning Systems

One of several deinitions for algorithmic fairness is: ł...discrimi-

nation is considered to be present if for two individuals that have the

same characteristic relevant to the decision making and difer only in

the sensitive attribute (e.g., gender/race) a model results in diferent

decisionsž [8]. The consequence of deploying unfair ML systems
could be disparate impact, practices which adversely afect people
of one protected characteristic more than another in a comparable
situation [8, 14].

Despite the łstatistical rationalityž of ML techniques, it has been
widely recognized that they can lead to discrimination. Many rea-
sons can contribute to this, including biased sampling, incorrect
labeling (especially with subjective labeling), biased representa-
tion (e.g., incomplete or correlated features), suboptimal or insen-
sitive optimization algorithm, shift of population or data distribu-
tion, and failure to consider domain-speciic, legal, or ethical con-
straints [8, 15]. Various techniques have been proposed to address
these causes of łunfair algorithmsž [15ś17, 38, 39]. For example
Calders and Žliobaitė suggested techniques to de-bias data [8], in-
cludingmodifying labels of the training data, duplicating or deleting
instances, adding synthetic instances, and transforming data into a
new representation space.

We use a recently proposed data de-biasing method that applies
a preprocessor to transform the data [9]. The result is a new dataset
which is łfaireržśwhile also limiting local deformations from the
data transformation. This is because the preprocessor optimizes
data transformations with respect to penalties that rise with the
magnitude of a feature change (e.g. changing a persons age from
5 to 60 will result in a higher penalty than from 5 to 8). Simply
put, if raw data contains biases that lead to an unfair model with
a discriminatory feature (e.g., certain racial category is weighed
more negatively than others), the data preprocessing mitigates the

bias introduced by that feature. This method has the beneit of
retaining all features (as opposed to removing the discriminatory
feature), which, among other beneits, would also allow exploration
of correlations among them [8].

The above debiasing techniques are normative by nature, i.e.,
they rely on prescriptively deining the criteria of fairness in order
to optimize for that criteria. A recent paper pursued a complemen-
tary descriptive approach by empirically studying how people judge
the fairness of features used by a decision support system in the
criminal justice system [14]. Their study uncovered the underly-
ing dimensions in people’s reasoning of algorithmic fairness, and
demonstrated individuals’ variations on these dimensions.

We adopt the same descriptive view, empirically studying how
people judge fairness of an ML system and considering individual
diferences in their prior position on algorithmic fairness. However,
we also ill a gap in prior work by investigating how normative
fairness (via the use of the preprocessor) is perceived by people, and
what factors impact such perception.

2.2 Explanation of Machine Learning

Explainable AI (XAI) is a ield broadly concerned with making AI
systems more transparent so people can conidently trust an AI
system and accurately troubleshoot it Ð fairness issues included.
Work on model explanations can be traced to early work on expert
systems [11, 33], which often explicitly revealed reasoning rules to
end-users. There has been a recent resurgence of XAI work driven
by the challenge to interpret increasingly complex ML models, such
as multi-layered neural networks, and by the evidence that ethical
concerns and lack of trust hampers adoption of AI applications [15,
22].

A large volume of XAI work is on producing more interpretable
models while maintaining high-level performance (e.g. [10, 23]),
or on methods to automatically generate explanations. Given the
complexity of current ML models, explanations are often peda-

gogical [34], meaning that they reveal information about how the
model works without faithfully representing the algorithms. Many
methods rely on some kind of sensitivity analysis to illustrate how
a feature contributes to the model prediction [26, 30], so they can
be model-agnostic, thus applicable to complex models. For exam-
ple, LIME explains feature contribution by what happens to the
prediction when the feature-values change (perturbing data) [30].
Another common category is case-based explanations, which use
instances in the dataset to explain the behavior of ML models. Ex-
amples include using counter-examples [36] and similar prototypes
from the training data [18]. Case-based explanations are considered
easy to consume and efective in justifying the decision, but may
be insuicient to explain how the model works.

Work on how people perceive explanations of ML systems is
a growing area [4, 20, 25, 32] which aims to inform the choices
and design of explanations for particular systems or tasks. Recent
work calls for taxonomic organizations of explanations to enable
design guidelines [25]. In earlier work on explaining expert systems,
researchers argued the diference between description v.s. justii-

cationśby making not only the how visible to users, but also the
why [33]. Accordingly, Wick and Thompson discussed the taxon-
omy of global-local explanations [37]. During initial practice, users
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may need global explanations that describe łhow the systemworks.ž
During actual use, users tend to rely on justiications of why the
system did what it did on particular cases.

Another useful taxonomy is proposed by Kulesza et al. by consid-
ering two dimensions of explanation idelity: soundness (how truth-
ful each element in an explanation is with respect to the underlying
system) and completeness (the extent to which an explanation de-
scribes all of the underlying system) [20]. They empirically showed
that the best mental models arose from explanations with both high
completeness and high soundness. However, crafting highly com-
plete explanations comes with a tradeof, as completeness usually
requires increasing the length and complexity of the explanation,
which was shown to be detrimental to task performance and user
experience in previous studies [28].

While researchers have explored user preferences in explanation
styles, they have paid little attention to individual diferences in
such preferences. Meanwhile, psychological research has long been
interested in individual diferences in explanatory reasoning. For
example, research shows that some prefer simple, supericial ex-
planations and others are more deliberative and relective in their
reasoning [13, 19]. Such individual diferences can be predicted by
cognitive style (e.g., cognitive relection, need for cognition) [13]
and culture [19]. It is therefore possible that individuals difer in
preferences for completeness and soundness of explanations.

Our work is concerned with how explanations impact fairness
judgments of ML systems. We build on a recent study by Binns et
al., which examined human perception of a classiier’s fairness in
the insurance domain [5]. They provided four diferent explanation
types applied to ictional scenarios to elicit fairness judgment. While
the study provided rich qualitative insights on the heuristics people
use to make fairness judgments, the authors acknowledge a lack of
ecological validity as the explanations were not drawn from real
ML model output. Moreover, the explanations were not produced
for the same data points, so they were incommensurate, which
could possibly explain the absence of conclusive preference in their
quantitative results.

Our work set out to overcome limitations on prior work by
automatically generating four types of explanations on a real ML
model, and quantitatively examining how they impact people’s
fairness judgments. Combining this advancement with the use
of the data preprocessor allowed us to perform more carefully
controlled experiments for ML fairness perception than prior work.

3 STUDY OVERVIEW

Related work informed four main considerations of our study: the
use case, choices of explanation styles, fairness issues we focus on,
and the individual diferences we explore. Through both quantita-
tive and qualitative results, we aim to answer the following research
questions:

RQ1 How do diferent styles of explanation impact fairness judg-
ment of a ML system?
RQ1a Are some explanations judged to be fairer?
RQ1b Are some explanations more efective in surfacing un-

fairness in the model?
RQ1c Are some explanations more efective in surfacing fair-

ness discrepancies in diferent cases?

RQ2 How do individual factors in cognitive style and prior posi-
tion on algorithmic fairness impact the fairness judgment with
regard to diferent explanations?

RQ3 What are the beneits and drawbacks of diferent explana-
tions in supporting fairness judgment of ML systems?

3.1 Use Case: COMPAS recidivism data

We conducted an empirical study with a ML model trained on a
real data set. Similar to [14], we chose a publicly available data set
for predicting risk of recidivism (reofending) with known racial
bias1. The data set was collected in Broward County, Florida over
a two year span. It is used by COMPAS (Correctional Ofender
Management Proiling for Alternative Sanctions), a commercial
algorithm to help judges score criminal defendants’ likelihood of
reofending. However, ProPublica has reported on troubling issues
with the COMPAS system [3, 21]. First, the classiier may have low
overall accuracy ([3] reported 63.6%). Second, the model is reported
to exhibit racial discrimination, with African American defendants’
risk frequently overestimated.

We chose a criminal justice use case because it carries weight
to elicit reaction on fairness, even for the general population. Note
our goal is not to study the actual users of COMPAS. Rather, we
are using the use case as a łprobež to empirically study fairness
judgments. The same use case was used in previous studies to
understand how people perceive algorithmic fairness with regard
to features used [14].

3.2 Explanation Styles

We chose to programmatically generate the four types of expla-
nations introduced by Binns et al. [5] (details to be discussed in
System Overview section) because they represent a set of com-
mon approaches in recent XAI work. They embody the catego-
rization of global v.s. local explanations. Speciically, inluence and
demographic-based explanations are global styles as they describe
how the model works; sensitivity and case-based explanations are
local styles as they attempt to justify the decision for a speciic case.
These explanation styles vary along the taxonomy introduced by
previous work in other ways: e.g. sensitivity based explanation is
similar to a łwhat ifž [25] and the case-based explanation is the
least łsoundž of the explanation types discussed [20].

3.3 Fairness Issues

Given our use case, we consider fairness issues in terms of racial
discrimination. While there are other controversial features in the
dataset [14], race is generally considered inappropriate to use in
predicting criminal risk (termed protected variable). We focus on
two types of fairness issues.

3.3.1 Model Unfairness. As discussed, the COMPAS data set is
known to be racially biased, but we mitigate that bias problem by
using the data processing method in [9]. In the experiment, we
introduce the use of the data processing technique as a between-
subject variable. By comparing participants’ fairness judgment for
a model trained on the raw data to that of processed data, we aim
to understand whether participants could identify the model-wide

1https://www.kaggle.com/danofer/compass

https://www.kaggle.com/danofer/compass
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fairness issue, and whether certain explanations expose the problem
better.

3.3.2 Case-specific disparate impact. Predictions from an ML al-
gorithm are not uniformly fairśconsider disparate impact from a
protected variable. For example, if two individuals with identical
proile features but diferent racial categories receive diferent pre-
dictions, it should be considered unfair [8, 14]. Statistically, these
cases are on the decision boundary of the feature space given the
relatively small weight of the race factor, meaning they have low-
conidence predictions that may be unfair. In the experiment, we
introduce disparate impact by race factor as a within-subject vari-
able (i.e., each participant would be asked to judge some cases with
disparate impact and some not). We adopt a factorial design with
disparate impact and data processing. For subjects given models
after data processing [9], disparate impact is reduced. We aim to
discover how well participants identify the case-speciic fairness
issues using diferent explanations.

Our hypothesis is that given local explanations focus on justify-
ing a particular case, they should more efectively surface fairness
discrepancies between cases. In contrast, global explanations may
require additional efort to reason about the position of the case
with respect to the decision boundary (e.g., łThis person’s features
all have no impact in the model, except racež). Note that local ex-
planations may expose the case-speciic fairness issue diferently.
Case-based explanation exposes the boundary position with a low
percentage of cases justifying the decision. Sensitivity-based expla-
nation explicitly describes disparate impactśłChanging this person’s
race changes the predictionž.

3.4 Individual Diference factors

Based on prior work, we focus on two areas of individual factors:
cognitive style and prior position on algorithmic fairness. For cog-
nitive style, we measure individual’s need for cognition [7]. For prior
positions, we consider two levels: one’s general position on the fair-

ness of using ML systems for decision support, and one’s position on

the fairness of using a particular featureśhere we focus on the race
factor.

4 SYSTEM OVERVIEW

4.1 Re-ofending Prediction Classiier

The model is a binary classiier predicting whether an individual in
the COMPAS data set is likely to re-ofend or not, implemented by
Scikit-learn’s logistic regression. The use of a regression model is
ecologically validÐmany current decision support systems use such
simple and interpretable models [35]. However, the explanation
styles we study are not limited to regression models.

We built the model using a subset of features in the COMPAS
dataset2, including Race as the feature with fairness issues. For
simplicity, we focus on two racial groups (Caucasian and African-
American), and iltered others. Other features included: Age (18-
29/30-39/40-49/50-59/>59), Charge Degree (Felony/Misdemeanor),
Number of Prior Convictions (0/1-3/4-6/7-10/>10), and Had Juve-

nile Convictions (True/False). According to Grgic-Hlaca et al. [14],
charge degrees and criminal history were deemed fair in a similar

2We split the data into training set (4222 samples) and testing set (1056).

use case. Age is also important in assessing re-ofense risk. Follow-
ing statistical convention, all categorical features are dummy coded
using the median category as the reference level, where possible.

The accuracy of the model is 67.1% on raw data and 67.6% on
processed data, comparable to reports on the accuracy of COM-
PAS system [6, 21]. Note that logistic regression also produces a
conidence level implicitly in class probabilities.

4.1.1 Data processing and cases with disparate impact. We used the
method introduced in [9] to perform data processing then re-trained
the model. The resulting model reduced bias against the African
American group, as evidenced by the feature co-eicient being
reduced from 0.177 to -0.036 (A feature co-eicient of 0 corresponds
to the feature having no efect in the decision).

To identify cases with unfair treatment of disparate impact, we
follow the deinition łtreating one person less favorably on a for-

bidden ground than another...in a comparable situationž [8]. That
is, if perturbing a test example’s protected variable (race) changes
the algorithm’s prediction, we consider it to have disparate impact.
We found 23 cases in the raw datasetśall very near to the decision
boundary3.

4.1.2 Sampling cases for the user study. Due to user study time
constraints, we could only show each user a small sample of the
explanations. Since we intended to study fairness discrepancies
between disparately impacted and non-impacted cases, we over-
sampled the former category. Among the 23 disparately impacted
instances, we sampled all 8 unique cases (i.e. the rest had the same
feature-values as one of the 8 we sampled). From the non-impacted
group of 992 instances, we sampled 16 unique cases.

4.2 Explanation Generation

As discussed, we patterned our explanations, shown in Figure 1
(truncated version, see supplementary materials for the full ver-
sion), after the templates presented by Binns et al. [5]. While Binns
et al. manually created examples of these explanation, we devel-
oped programs to automatically generate them to obtain compa-
rable explanation versions for the same data point, controlling for
diferences in representation and presentation. These generation
methods can also be broadly applied to ML prediction models using
relational features.

4.2.1 Input Influence-based Explanation. describes the decision
boundary itself. Because the feature coeicients of the logistic re-
gression model encode the relative importance of each feature, we
present them as strings of ‘+’ and ‘-’ in our explanations, as shown
in Figure 1. To do this, we discretized them into 11 buckets, based
on the range of the maximum and minimum coeicient. This type
of explanation is global in that the decision boundary is a property
of the classiier, and thus will be described in the same way for all
samples.

4.2.2 Demographic-based Explanation. describes the structure of
the training data and how it is distributed with respect to the deci-
sion boundary. We simply summarize, for training data matching

3The raw data classiier’s conidence on the disparately impacted sample group had
an average of 52% and a max of 54%. The processed data classiier had average and
max conidence both at 50%.
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Input-Influence

Demographic

CaseSensitivity

The more +s/-s means a person with that 

attribute is more/less likely to re-offend. 

*  Appears next to Iliana’s attributes 

Race 

•Caucasian (0) 

•* African-American (+) 

Age 

•* 18-29 (++++)

•30-39(+)

•…

Charge degree:

•…

Number of prior convictions

Has juvenile priors:

• Iliana’s race is African American.

If it had been Caucasian, she would have been 

predicted as NOT likely to reoffend

• Iliana’s age is 18-29.

If it had been older than 39, she would have been 

predicted as NOT likely to reoffend

The training set contained 10 individuals 

identical to Iliana

6 of them reoffend (60%)

• Race: African-American 

• Age: 18-29

• Charge degree: Misdemeanor

• Prior convictions: 0

• Has juvenile priors: Yes

Prediction:  

Likely to reoffend 

Defendant: Iliana

The prediction is based on the likelihood of previous 

cases with different attributes re-offended or not. 

A * appears next to Iliana’s features.

Race 

• 40% in Caucasian race group re-offended

• * 55% in African-American race group re-

offended

Age 

• * 58% in 18-29 age group re-offended

• 49% in 30-39 age group re-offended

• …

Charge degree:

• …

Number of prior convictions

Has juvenile priors:

Figure 1: Examples of explanations generated using the raw data classiier, adjusted and truncated for brevity. Consult our sup-

plementary materials for full explanation output from both classiiers ś as seen by participants (including * and highlights).

each feature category, the percentage with the same label as pre-
dicted for the presented example. This type of explanation is global
and generates the same description for all samples on each side of
the decision boundary.

4.2.3 Sensitivity-based Explanation. seeks to modify the presented
sample along each feature until the prediction changes. When the
prediction does change, we report back to the user the necessary
feature change to produce the change in output. This type of ex-
planation is local as it is speciic to each presented example, and
justiies the decision by indicating changes needed to produce a
diferent output.

4.2.4 Case-based Explanation. does a nearest neighbor search in
the training data to ind similar cases. Since our study has a large
data set with respect to the feature space, we frequently ind neigh-
bors occupying the same feature space location as the sample pre-
sented for explanation. When this is the case, we show the % of
those neighbors with the same label as the prediction. When no
exact matches are found, we simply show the features and label for
the nearest neighbor in the training data. This is a modiication to
the design in Binns et al., which describes only a single identical or
similar case. This explanation is local, and attempts to justify the
decision by indicating similar examples with similar outputs.

5 METHODOLOGY

Our study adopted a mixed design by having data processing
(raw/processed) and explanation styles (4 styles) as between-
subject variables, and disparate impact as a within-subject variable.
Each participant completed 6 fairness judgment trials, where each
trial consisted of judging a single case. 2 cases were randomly
selected from the 8 disparately impacted cases, and we sampled 4

from the 16 non-impacted cases in the test data. The order of the
trials was randomized.

In September 2018 we recruited 160 Amazon Mechanical Turk
workers, with the criteria that the worker must live in the US and
have completed more than 1000 tasks with at least a 98% approval
rate. They were randomly assigned to the 8 conditions (2 data pro-
cessing treatments × 4 explanations). Among them, 62.5% are male,
78.8% are self-identiied as Caucasian, 29.4% are under 30, and 13.3%
are above 50. In our quantitative analysis, we included participants’
race and gender as co-variance but observed no signiicant efect.

5.1 Study Procedure

We conducted an online survey-style study. Participants irst pro-
vided informed consent, then reviewed a scenario about a ML sys-
tem developed to assess defendants’ re-ofense risk, to help a judge
make bail decisions. Each participant was given 6 trials, and within
each trial, the participant would irst review information about
an individual (Figure 1, center region), then make his or her own
prediction about whether that individual would re-ofend. This step
was to ensure they carefully consider the features used in the pre-
diction. Subsequently, they would be presented with the prediction
from the machine learning classiier with one of the four styles
of explanations. They were asked to rate agreement with: łHow
the software made the prediction was fairž based on a 1 (Strongly
Disagree) to 7 (Strongly Agree) Likert Scale, together with an open
question justifying their rating.

We checked attention after the third trial, by asking participants
to ind the feature not used by the software from a list of choices.
All participants passed the check. After completing all tasks, partici-
pants would answer a surveymeasuring their individual diferences,
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Figure 2: Overall mean ratings of fairness, per explanation

type, data process treatment (raw= , processed=▲), and sam-

ple group (impacted=blue dashed lines, non-impacted=red

solid lines). The lines indicate the 95% conidence intervals.

and collecting demographic data. On average the study took 18 min
to complete, and each participant was compensated with $3.

5.2 Individual Diferences

We measured two types of individual diferences: prior positions
on algorithmic fairness, and cognitive style. For prior positions,
we further diferentiate between one’s general position on using
ML systems to assist decision-making, and position on the fairness
of using race as a feature. We use a semantic diferential scale
that is often used to measure attitude on controversial topics [24].
Speciically, we ask participants to rate the statements łConsidering
race as a factor in criminal risk predictionž and łUsing machine

learning software to replace or augment human decision makingž,
on 5 pairs of bipolar adjectives such as łharmful-beneicialž and
łunethical-ethicalž with a 7-point Likert scale. The ratings of the 5
pairs are averaged to represent the individual’s prior position. The
Cronbach Alpha for the scale on general ML position is 0.95, and for
the race feature is 0.98, showing excellent consistency. For cognitive
style, we chose to measure one’s Need for Cognition using only 4 of
the items from the standard scale [7], due to the time constraints.

6 RESULTS: QUANTITATIVE

We start with examining the efect of explanation style, data process-
ing (raw/processed) and disparate impact (true/false) on participants’
fairness judgment (RQ1). We then explore how individual difer-
ences, including prior position on fairness of ML, prior position
on fairness of using the race feature, and need for cognition, make
a diference on the judgment (RQ2). All statistical analyses were
done in R. The lmerTest package was used to run mixed-model
regressions.

6.1 Explanation, data processing, and disparate
impact

Given the complexity of the statistical model, we irst describe
the trends with the descriptive data, then report statistical testing
results. In Figure 2, we plot the mean and the 95% conidence in-
terval of the mean of fairness ratings in all experiment treatments,
showing several trends:

(1) Predictions made on the processed data (triangles) were rated
fairer than those on the raw data (circles). It suggests that par-
ticipants perceived fairness issues for the model trained on the
raw data, and the processing technique mitigated the problem.

(2) Predictions made on cases with disparate impact (blue dashed
lines) were rated less fair than those without it (red solid lines).
This shows participants’ fairness perceptions align with the
presence of a fairness discrepancy between groups.

(3) Explanation styles made nuanced diferences. As expected,
the two local explanations led to higher discrepancy of fairness
ratings between disparately impacted cases and non-impacted
cases (diference between the dashed and solid lines) than the
two global explanations. Thus, the former are more efective in
exposing case-speciic fairness issues. Moreover, this diference
is most prominent for sensitivity-based explanations applied to
raw data. This could be caused by sensitivity-based explanation
being the most explicit in exposing disparate impact, while data
processing mitigated the problem.

We now report the statistical signiicance of these observed
trends. In particular, to validate that sensitivity-based explanation is
most efective in exposing the disparate impact issue in the raw data,
we expect to see a three-way interaction between explanation style,
data processing, and disparate impact. We construct a mixed-efect
regression model with the three-way interaction (and all the lower
order interactions) as ixed efects, and participant as a random
efect. We control for gender and race as covariances and neither
has signiicant efect. The three-way interaction we expected is
not signiicant, F (3, 152) = 0.54, p = 0.66. There is a marginally
signiicant4 two-way interaction between explanation style and
disparate impact, F (3, 152) = 2.35, p = 0.07, and signiicant main
efect of disparate impact, F (1, 152) = 103.25, p < 0.001, and data
processing, F (1, 152) = 4.65, p = 0.03.

The main efect of data processing and disparate impact prove
statistical signiicance for the irst two observed trends. The two-
way interaction indicates that explanation styles had diferential
impact on exposing the disparate impact issue. We conduct pairwise
comparison for this interactive efect to identify between which
explanation styles this perceived fairness discrepancy signiicantly
difer. We found that if we use sensitivity-based explanation as the
reference level, inluence-based explanation is signiicantly difer-
ent, F (1, 156) = 5.14, p = 0.02, and demographic-based explanation
is marginally signiicant, F (1, 156) = 3.29, p = 0.07; If we use case-
based explanation as the reference, inluence-based explanation
is marginally diferent, F (1, 156) = 3.36, p = 0.07. These results
validate the observation that local explanations are more efective
than global ones in exposing fairness discrepancies in diferent
cases.

While we did not ind statistical signiicance of the three-way
interaction that validates the efectiveness of sensitivity-based ex-
planation, a possibility is that there are individual diferences for
which the model did not account. In the next section, we explore
that possibility.

4We consider p < 0.05 as signiicant, and 0.05 ≤ p < 0.10 as marginally signiicant,
following statistical convention [12]
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Figure 3: Same data as Figure 2, split by prior position on the

fairness of using the race feature. Left: Participants that con-

sider using race łUnfairž (race_pos < 4). Right: Participants

that consider using race łFairž or neutral (race_pos >= 4).

6.2 Individual diferences

We enter the following factors into the model: prior position on
using machine learning to assist decision-making (ML position),
prior position on fairness of using the race feature (race position),
and need for cognition. We start from four level interactions of
each of the individual diference factors with the three manipulated
variables (explanation, data processing, disparate impact), and then
iteratively reduce it to lower-level interactions if it is not signiicant.
We eventually arrive in a model with the following terms: a four
way interaction between race position and the three manipulated
factors, F (3, 144) = 2.59, p = 0.05, and a marginally signiicant
two-way interaction between ML position and explanation style,
F (3, 137) = 2.43, p = 0.07. We did not ind need for cognition to
make a diference and removed it.

By including these individual diference factors in the model,
we now ind the three-way interaction between explanation style,
data processing, and disparate impact to be signiicant, F (3, 144) =
2.96, p = 0.03 (its lower-level two-way interactions as well). In
addition to the main efect of data processing (F (1, 137) = 4.68,
p = 0.03) and disparate impact (F (1, 144) = 28.86, p < 0.001) as
in the original model, we also ind a main efect of ML position
(F (1, 137) = 17.31, p < 0.001), race position (F (1, 137) = 6.43,
p = 0.01), and a marginally signiicant main efect of explanation
style, F (3, 137) = 2.11, p = 0.10.

The above signiicant three-way and four-way terms, after in-
cluding race position in the analysis, demonstrate that the con-
sideration of this individual factor łde-noisedž the data. In other
words, it is only when an individual considers using race to be
unfair, that a sensitivity-based explanation like thisśłIf Nolan had

been ‘Caucasian’, he would have been predicted to be NOT likely to

re-ofendžśheightens the concern and signiicantly lowers the per-
ceived fairness.When an individual does not consider it problematic
to use race as a decision factor, they would not perceive such an
explanation negatively. This trend is illustrated in Figure 3, where
we separate participants who considered the race factor unfair and
those who considered it fair-to-neutral (33.1% of all participants).
In fact, for those who consider race to be a fair or neutral feature
to use (Figure 3, Right), they did not perceive predictions made on
the raw data (circles) to be less fair than processed data (triangles),
and generally rated fairness to be higher (thus the main efect of
prior position on race).

The main efect of ML position and its interactive efect with
explanation style indicates that a general positive position on al-
gorithmic fairness enhanced perceived fairness, and also led to

3

4

5

case sensitivity influence demographic
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Figure 4: Overall mean fairness ratings, broken down by

prior position on łTrust in MLž (high trust=×, low trust=3).

diferent explanation preferences. We conducted pairwise com-
parison between styles of explanation, and found this interactive
efect with ML position to be signiicant for inluence-based ex-
planation, F (1, 148) = 6.25, p = 0.01, and marginally signiicant
for demographic-based explanation, F (1, 148) = 2.77, p = 0.10, if
using case-based explanation as the reference. It is signiicant for
inluence-based explanation, F (1, 148) = 3.73, p = 0.05, if using
case-based explanation as the reference. This implies that people
who trust ML systems gain even higher conidence in the fairness
of a prediction given global explanation (Figure 4).

It is worth noting that after controlling for these individual
factors, we now see a marginally signiicant main efect of explana-
tion style. Pairwise comparisons show that case-based explanation
was rated marginally signiicantly less fair than inluence-based
(F (1, 153) = 3.51, p = 0.06) and demographic-based explanation
(F (1, 148) = 3.20, p = 0.08). We consider it as evidence that case-
based explanation is seen as generally less fair.

To summarize, in response to RQ1 and RQ2, we found evidence
that: 1) Case-based explanation is seen as generally less fair; Global
explanations further enhance perceived fairness for those who have
general trust for machine learning systems to make fair decisions.
2) Local explanations are more efective than global explanations
at exposing case-speciic fairness issues, or fairness discrepancies
between diferent cases. Sensitivity-based explanations are the most
efective in exposing the fairness issue of disparate impact made
by a particular featureÐbut only if the individual views using that
feature as unfair. 3) In general, we show that individuals’ prior
position on ML trust and feature fairness have signiicant impact
on how they react to explanations, and possibly more so than
diferences in cognitive styles.

7 RESULTS: QUALITATIVE

Along with collecting fairness ratings, we asked participants to
justify their judgment. The authors reviewed this data and used
open coding to extract themes in the answers. Here we discuss
two groups of themes. One is to understand how participants made
fairness judgments. Another is on participants’ feedback for the
four styles of explanations.

7.1 How is fairness judgment made?

In the open-ended answers, we investigated the criteria participants
used to judge fairness. We see variations in reliance on the pro-
vided explanations, and depth of reasoning about the algorithm’s
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processes. These results provide further evidence of individual dif-
ferences in the criteria used to make fairness judgments of ML
systems.

7.1.1 General trust or distrust in ML systems. Some participants
provided reasons not speciic to a case or explanation, but that a
general trust or distrust of ML systems dominated their judgment,
as they tended to give consistent ratings across cases. Reasons
for a general trust include łbased on objective data is better than

subjective opinionsž (CR-31)5, łlarge data setž (CR-37), łuses statistics
based on prior knowledge to make a judgmentž (IR-176). In contrast,
some participants considered generalization by statistics is unfair to
begin withśłit might be unfair to group everybody together - makes

more sense for the judge to have individual judgment.ž (IP-184), while
others think that łthere needs to be a human element to the decisionž
(CR-62). These observations corroborate Binns et al. [5] and further
validate that participants varied on their general position on using
ML system for criminal justice, and it inluenced their fairness
judgment.

7.1.2 Features used. Participants frequently cited features used by
the algorithm as reasons for fairness or unfairness. Some explicitly
diferentiated between the process of the algorithm and the feature
consideredśłThe software makes it’s decisions based on it’s algo-

rithm, so I believe it is fair and impartial on that account. However,

some of the categories it is programmed to consider, such as age and

race, are unfairž (SP-71). It is interesting to note that we observe
individual diferences in the position on the fairness of race feature
in the qualitative results as well. While many participants called
out the problem of considering race, a few participants who saw
the processed data commented that ł[if] race was not a predictor [it]
may not accurately relect the realityž (DP-68). There is also some
controversy on using age and juvenile priors as features. Partici-
pants’ comments echo results from a previous study [14] showing
that people consider multiple dimensions (e.g., relevance, disparate
outcome, volitionality) in their judgments about the fairness of fea-
tures used in decision-making algorithms, and individuals weigh
these dimensions diferently.

7.1.3 Lacking features. As observed in [5], several participants
criticized the limited features used in our simple model. Some sug-
gested to have more detailed information on current features, such
as łfrequency of priors or the interval of time since the last prior in

order to get a more accurate assessment of what one’s prior record

meansž (DP-53). Others are less optimistic about the possible suf-
iciency of features to ensure fairnessśłsoftware cannot fully take

into account environmental factors that cause people to go down a

bad pathž (CR-76).

7.1.4 Prediction process. Many participants based their fairness
judgment on their understanding of the algorithms’ process. Some,
especially those presented with global explanations, closely exam-
ined explanation details, e.g. łSoftware seems to be lawed in major

areas... improper weighing of distant vs recent past, and a question-

able choice of how to evaluate probabilities in each casež (DR-119).
Some also considered failure to account for external factors, e.g.

5Participant IDs give treatment info, explanation (Sensitivity, Case, Input-Inluence,
Demographic) followed by data processing (Raw, Processed).

łthe number may be relatively accurate for the race and charge degree

categories, but if the [past] laws were diferent they would probably be

higherž (DR-107). Moreover, multiple participants attributed their
low fairness ratings to insuicient understanding of process, or
ł‘how’ the data is usedž (DR-172).

7.1.5 Data issue. A few participants questioned the underlying
data used. Almost all of them were in either the demographic- or
case-based explanation conditions, as these two styles leverage
information about distributions of similar cases to explain the deci-
sion. For example, ł‘Not re-ofend’ rate for African Americans is a

little low. I think the percentage may be higher in reality... data could

have been biasedž (DR-107).

7.2 Explanation styles

Belowwe summarize codes that are prominent for each explanation
style. These results could help us better understand the beneits
and drawbacks of each explanation style, and inform future work
on designs of ML explanations.

7.2.1 Influence based. It is a global explanation that faithfully de-
scribes how each feature contributes to the algorithm’s decision-
making process. We observed that this explanation prompted more
comments on details of the process, such as the weights of diferent
features, and the trends with regard to diferent categories of a fea-
ture, e.g. łit is fair because it doesn’t discriminate by race, but rather

on age and prior convictions... if someone exhibits a behavior pattern

it is likely to will continue, and I think people who are young are more

apt to take risksž (IP-208). On the one hand, the detailed description
of the algorithm process adds to the conidence in participants’
fairness judgments, which may help explain its enhancement of
fairness perception among those trusting ML algorithms. On the
other hand, it exposes more information for people to scrutinize,
and thus subject to critiques from the heterogeneous standards of
fairness.

7.2.2 Demographic based. This is a type of global explanation
that does not expose the process of the algorithm, but justiies the
decision with the data distributions. Sometimes, the distributions
were seen as convincing, e.g. łThe high percentage of people with

more than 10 prior convictions who end up reofending was staggering,

and justiies the predictionž (DP-57). Other times, participants found
its explanation of the process inadequate, as the percentages do
not clearly connect to an outcomeśłThe percentages aren’t high
enough. It could go either wayž (DR-157). Sometimes it also directed
participants attention to the potential biases of underlying data.

7.2.3 Sensitivity based. Themain beneit of sensitivity-based expla-
nation seems to be its conciseness and explicitly directing attention
to features relevant to the particular decision. It appears to be con-
vincing and easy to process when a decision is uncontroversial
śłThe rationale is so basic (no prior ofenses) that it has to be fairž
(SR-138). łIt’s taking into consideration everything that we would

and puts it into an easy to read mannerž (SP-220). Consistent with
our quantitative results, for disparately impacted cases where the
race factor is explicitly mentioned, sensitivity-based explanation
heightens the concern and was perceived most negativelyśłIt says
that in the same situation, if the ofender were African-American
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rather than Caucasian, they would have been likely to ofend. This is

racial proiling and inaccurate in my opinion.ž (SR-124).

7.2.4 Case based. As we found in the quantitative results, case-
based explanation was judged to be the least fairÐand the qual-
itative results provided reasons. First, some found it to provide
little information about how the algorithm arrives at a conclusion.
Second, the number of identical cases and the percentage of cases
supporting the decision are often considered too small to justify the
decisionśłIt was unfair for the defendant because she was compared

to only 22 other identical individuals... not to mention that only a little

over 50% reofended.ž (CR-61). This observation is consistent with
Binns et al. [5], however, our work is based on the actual output of
a ML model trained on a real dataset ś allowing us to empirically
show a limitation of case-based explanation6. Lastly, we found vari-
ations in individuals’ positions on the fairness of the łexplained
processž (as opposed to the actual algorithm process) to make deci-
sions based on identical cases. While some people consider it to be
fair to łcompare the actions of people with similar history and back-

groundsž (CP-200), others questioned the underlying rationale such
as łis anyone really identical if more things consideredž (CP-201).

8 DISCUSSION

8.1 Supporting diferent needs of fairness
judgment

The most important take-away from our study is that there are mul-
tiple aspects and heterogeneous standards in making fairness judg-
ments, beyond evaluating features, as studied in previous work [14].
Our experiment highlights two types of fairness issues: unfair mod-
els (e.g., learned from biased data), and fairness discrepancy of
diferent cases (e.g., in diferent regions of the feature space). Our
qualitative results further illustrate that algorithmic fairness is
evaluated by various dimensions including data, features, process,
statistical validity, as well as broader ethical and societal concerns.

Our results highlight the need to provide diferent styles of expla-
nation tailored for exposing diferent fairness issues. For example,
we show that local explanations are more efective in exposing
fairness discrepancies between diferent cases, while global expla-
nations seem to render more conidence in understanding themodel
and generally enhance the fairness perception. Hybridizing the two
techniques reveals a possible human-in-the-loop worklow; using
global explanations to understand and evaluate the model, and local
explanations to scrutinize individual cases.

It is critical to note that diferent regions of the feature space
may have varied levels of fairness and diferent types of fairness
issues. This calls for development of ine-grained sampling methods
and explanation designs to better support fairness judgment of ML
systems. To that end, we envision an active-learning paradigm
for fairness improvement, where the system interactively queries
the human for fairness judgment of its predictions, together with
explanation options, then optimizes the algorithm based on user
feedback.

6We found that 16% of the test data exhibited the failure mode of contradicting the
claim (< 50% of individuals with identical features share label). Meanwhile insuicient
justiication of the claim (between 45% and 55% label matches) was quite common,
with 24% of the test data. The prevalence of these failure modes indicates inherent
łunsoundness.ž

Our qualitative results suggest another useful categorization of
explanation styles: process oriented v.s. data oriented explanation.
The case- and demographic-based explanations we studied leverage
information on data distribution to justify its decision but reveal
less on how the decision was made. Inluence- and sensitivity-based
explanations link each feature to the decision. We observe a general
preference for process-oriented (how) explanations, although a
focus on data has the potential beneit of directing attention to
issues in the data and dilutes the łblamež on the algorithms.

8.2 Individual diferences and descriptive
fairness

Another contribution of our study is to empirically demonstrate
how individuals’ prior positions on algorithmic fairness impact
their reaction to diferent explanations. We diferentiate between a
general position on algorithmic fairness, and position on fairness
of a particular feature used.

The diference between normative (prescriptively deining what
is fair) versus descriptive fairness and its implication for algorithmic
fairness has been discussed in previous work [14]. Empirically, we
show that even though race is considered a protected variable,
individual positions on its fairness still vary (close to one third
of participants considered it neutral or fair to use). This indicates
a lack of agreement on the meaning of moral concepts, a result
Binns et al. [5] hinted at qualitatively. In diferent contexts, an
algorithm developer may have to choose between a normative or a
descriptive position of fairness, and it is important to be aware of
the variation of fairness position in the population. For example, if
a ML system takes a normative position and aims to eliminate pre-
deined biases based on people’s feedback, it may need to account
for their prior positions to weigh the feedback diferently. It may
be arguable whether explanation should always attempt soundness
and completeness for all individuals. On the other hand, if a system
aims to provide optimal decision support for individual needs, it
would be useful to provide mechanisms for individuals to express
their prior positions as direct input for the algorithm (similar to the
idea of active-learning by tuning features [29, 31]).

8.3 Limitations

We performed our study with crowdworkers, rather than judges
who would be the actual users of this type of tool. Additionally,
there are many styles and elements of explanations not studied
here. One important element not studied is conidence, which we
declined to present to participants because we could not control
for it.

9 CONCLUSION

Our work provides empirical insights on how diferent styles of
explanation impact people’s fairness judgment of ML systems, par-
ticularly the diferences between a global explanation describing
the model and a local explanation justifying a particular decision.
We highlight that there is no one-size-its-all solution for efective
explanation, but depends on the kinds of fairness issues and user
proiles. Providing hybrid explanations, allowing both overview of
the model and scrutiny of individual cases, may be necessary for
accurate fairness judgment. Furthermore, we show that individuals’
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prior positions on algorithmic fairness inluence how they react
to diferent explanation types. The results call for a personalized
approach to explaining ML systems. However, speciic to fairness,
ML systems may need to take a normative or descriptive position
in diferent contexts, which may diferentially require corrective or
adaptive actions considering individual diferences in their fairness
positions.
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