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ABSTRACT
Automated Machine Learning (AutoML) is a rapidly growing set
of technologies that automate the model development pipeline by
searching model space and generating candidate models. A criti-
cal, final step of AutoML is human selection of a final model from
dozens of candidates. In current AutoML systems, selection is sup-
ported only by performance metrics. Prior work has shown that
in practice, people evaluate ML models based on additional crite-
ria, such as the way a model makes predictions. Comparison may
happen at multiple levels, from types of errors, to feature impor-
tance, to how the model makes predictions of specific instances.
We developed Model LineUpper to support interactive model com-
parison for AutoML by integrating multiple Explainable AI (XAI)
and visualization techniques. We conducted a user study in which
we both evaluated the system and used it as a technology probe to
understand how users perform model comparison in an AutoML
system. We discuss design implications for utilizing XAI techniques
for model comparison and supporting the unique needs of data
scientists in comparing AutoML models.

CCS CONCEPTS
• Human-centered computing → Empirical studies in visu-
alization; • Computing methodologies→Machine learning.
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1 INTRODUCTION
Although Machine Learning (ML) technologies have permeated nu-
merous domains, development cost and expertise barriers for build-
ing ML models remain high [15, 20]. Automated Machine Learning
(AutoML) technologies have reduced development costs by generat-
ing optimized ML models using novel model selection, feature engi-
neering, and hyperparameter optimization algorithms [18, 29, 36].
Recently, AutoML technologies have matured from development
efforts at technology companies [7, 9, 12]. A research field is also
emerging on the study and development of tools that support user
interactions with AutoML systems [29, 32, 33]. This work demon-
strates the importance of retaining human agency in AutoML work-
flows [16, 30, 31, 33]. Users desire transparency features to under-
stand how AutoML works [6, 34], as well as control features to
make adjustments based on their prior knowledge [33].

Existing tools for AutoML focus on procedural transparency [6,
33, 34], showing the process by which AutoML searches through
algorithmic and optimization spaces. This approach aims to provide
assurance that the search was thorough, and allows to adjust the
search space configuration. But, it remains questionable whether
AutoML users, especially less experienced data scientists (like data
workers in [11]), could act on adjusting the AutoML process. Few
systems provide algorithmic transparency, showing how AutoML-
generated models work, such as how they weigh features and judge
specific instances. Most AutoML systems use performance metrics as
basis formodel evaluation and ranking. However, research onmodel
analytics and comparison of manually-built models has shown that
none of the stakeholders are satisfied to only see performance
metrics [21, 23, 28, 29, 35]. They are interested in details such as
types of errors, how models perform on specific instances, and a
detailed reasoning by which models make predictions.

These observations have motivated recent work to leverage vi-
sualization techniques from Explainable AI (XAI) to support model
analytics and debugging [4, 10, 13, 14, 26]. XAI techniques allow us
to understand the inner-workings of an ML model. But, the amount
of human effort required to scrutinize an ML model is high, and
is exacerbated in the AutoML context in which dozens of models
may be produced from a single experiment. Also, it is unclear how
users of AutoML conduct model comparison, since some candidate
models tend to be similar variants of one another with differences
in optimization choices.
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We introduceModel LineUpper, a visualization tool that provides
transparency into candidate models generated by AutoML. Model
LineUpper allows users to interactively compare AutoML models
based on multiple aspects of their function and behavior. In a user
study with 14 data scientists, we learned that Model LineUpper
helped participants select models based on different criteria such as
types of errors and alignment with domain knowledge. Our work
highlights the need for algorithmic transparency, evaluates how
XAI techniques can support this need, and sheds light on the unique
design requirements of AutoML systems.

2 MODEL LINEUPPER
The design of Model LineUpper was informed by prior work on
model comparison outside of AutoML context [28, 33, 35], as well
as many discussions with expert AutoML users. Current AutoML
systems [9, 12] provide users with overall model performance met-
rics, but treat individual models as opaque boxes. Our design goal
is to enable users to open the opaque boxes and engage in model
comparison based on: 1) selected instances of interest or subsets of
data; and 2) explanations of how models make predictions. Recent
work has introduced instance-level investigation [1, 2, 5, 24] and
XAI techniques [4, 8, 10] for model analytics tools, demonstrating
their effectiveness in supporting debugging tasks for a single model,
and engendering user trust and confidence in the final outcome.
But, with one recent exception [35], these two capabilities have not
been utilized for model comparison.

To support explainability and instance-level investigation, Model
LineUpper consists of three views, seen in Figure 1: (a) metrics
table, (b) feature importance comparison view, and (c) probability
scatterplot matrix. In addition, there are legends for the plots and a
control panel that allows users to select models to be displayed.

We use a loan risk modeling task to illustrate the functions of
Model LineUpper and conduct the user study, while in practice
the system works with other data and tasks. The models were gen-
erated by IBM’s AutoML system, and were trained with a subset
of data published by the LendingClub Corporation [17]. Our data
set has 47 features and 11,553 instances, each representing a loan
application. The model’s task is to predict the grade of application
(likelihood of repayment). We created a balanced binary label that
indicates whether a loan was high grade (Grades A and B in the
original dataset) or low grade (Grades C to G). As AutoML itera-
tively applies variations of optimization to different ML algorithms,
Model LineUpper indicates the algorithm and optimization variants
in the model name. For example, “LGBM_2: Hyperparameter Opti-
mization” indicates a light gradient boosted model (LGBM) with
type 2 optimization (hyperparameter optimization).

2.0.1 Metrics Table. The metrics table (Figure 1a) supports compar-
ing models by overall performance metrics. The set of metrics vary
based on type of prediction task (e.g., classification vs. regression).
For binary classification tasks, Model LineUpper computes common
metrics such as F1, accuracy, ROC AUC, etc. Each row corresponds
to one model that user has selected to compare. The cells are shaded
based on the ranking of values within a column, which guides the
comparison and suggests cells for further examination.

2.0.2 Feature Importance Comparison View. Feature importance
(FI) is a popular XAI technique that explains a model by how much
impact each feature has on its predictions [25, 27]. FI can act as
both global and local explanations: global FI shows how the model
weighs different features in general, whereas local FI explains a
model’s prediction for a specific instance based on how the model
weighed that instance’s features. The FI comparison view (Fig-
ure 1b) can shift between showing global FI, when no instance is
selected, and local FI, when user selects data points in the probabil-
ity scatterplot matrix (Section 2.0.3). Global FI values are obtained
via SciKit-Learn’s [22] feature_importances_ when available, or in
the case of regression models, taking the absolute value of feature
weights. These values are then normalized to allow comparison
across different algorithms. Local FI values are generated using
the SHAP Python library [19], which produces sensitivity-analysis
based explanations [27].

To support comparing FI across models, we visualize FI values
of all models for a single feature in one panel and sort the panels
by average global FI. When a group of points are selected, we
plot average local FI value of them for each feature. We also show
average feature value of the selected points in the title. In Figure 1b,
the selected points have an average installment of $326.21. The
LGBM model considers their installment scores to be a positive
indicator of a high-grade loan, whereas other models consider the
scores to be somewhat neutral.

2.0.3 Probability Scatterplot Matrix. Thematrix is inspired byMan-
ifold [35], which supports comparison of model pairs and identifies
instances of potential interest. In Figure 1c, each single panel shows
predicted probabilities of instances in the test data set for target
class (high grade loans) by a model pair. Each dot represents a data
instance, and its (x ,y) coordinates correspond to probability that the
instance is predicted to be high grade by the two models. The quad-
rants and color coding present the true/false positives/negatives of
the two models’ predictions. They show instances on which the two
models agree (quadrants 1 and 3) or disagree (quadrants 2 and 4). A
blue dot in quadrant 1 indicates a false positive error for both mod-
els, whereas a blue dot in quadrant 2 indicates a false positive error
for just the model on the y axis. The distribution pattern of the dots
helps to compare the confidence of two models, as denser lines at
the ends of an axis indicate a more confident model corresponding
to the axis (LGBM model in Figure 1c).

The matrix serves as an entry point for instance-level investi-
gation, which could be useful for users as they might not be as
familiar with their data as when they manually create a model.
Users can brush to select data points of interest. These data points
would remain colored in all scatterplots, graying out all other data
points. The FI comparison view is correspondingly updated to
show local FI of the selected data points, providing further in-
sight. Figure 1b shows FI of points inside the green rectangle of
Figure 1c. This region is in quadrant 4 and has many orange points.
These points were correctly classified by LGBM_2 but incorrectly
by LogisticRegression_2. Further examination of the local FI
plots suggests that LogisticRegression_2might have a tendency
of making mistakes by under-weighing the installment and term
features.
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Figure 1: The three primary components of Model LineUpper.

3 USER STUDY
Our user study served two purposes: evaluate the design of Model
LineUpper, and use it as a technology probe to understand how
AutoML users engage in model comparison tasks. We designed a
scenario-based contextual inquiry in which we asked participants
to perform the role of a data scientist building an ML model to help
loan officers evaluate loan applicants. Participants were presented
with 16 models generated by IBM’s AutoML system (4 optimization
variants applied to 4 algorithms). They were asked to use Model
LineUpper to select the best model. To emphasize different com-
parison criteria, we gave multiple scenarios in which a stakeholder
expressed different preferences and asked participants to reconsider
their choice. The scenarios included: 1) an executive pointed out
that they would prefer an interpretable model; 2) a loan officer
commented that it is important that the model’s rationale aligns
with what features it pays attention to; and 3) an executive empha-
sized importance of avoiding making loans to people who are likely
to default (lower the false positive rate). We asked participants to
think aloud as they conducted the comparison tasks and inquired
about their thinking when appropriate.

We recruited 14 data scientists from different divisions within
an international information technology company. 57.1% of them
reported having 1-5 years of experience working as data scientists
(28.6% over 5 years, 14.3% less than a year). All were experienced
with visualization, and all but one had experience with explainabil-
ity techniques.

To familiarize participants with Model LineUpper, we sent them
a tutorial video before the interview. We began the study by asking

participants to explore the interface for 5 minutes, then trained
them further through a task of identifying the model with the
highest accuracy and understanding how another model compares
to it. We then gave them the three comparison scenarios in or-
der. After finishing the scenarios, we interviewed participants for
10-15 minutes about their experience with Model LineUpper and
their thoughts on it. Lastly, participants filled out a short survey of
our tool, which included the System Usability Scale [3]. All inter-
views were conducted remotely over video conferencing and were
recorded and automatically transcribed. We conducted qualitative
coding on the interview transcripts while watching the videos to
understand users’ activities.

4 RESULTS
Participants gave high ratings to usability of Model LineUpper,
M (SD) = 3.98 of 5 on the SUS. They found global FI feature to
be the most useful, M (SD) = 4.29 (0.47), followed by scatterplot
matrix, M (SD) = 4.21 (0.43), and then the feature to select data
points to see local FI,M (SD) = 3.93 (0.62). Below, we first describe
how participants used the features ofModel LineUpper, then discuss
emergent themes on unique design requirements for AutoMLmodel
comparison.

4.0.1 Feature Importance Comparison View. All participants inves-
tigated the global FI and used it to support their choices. For the
second scenario to pick a model that is agreeable for loan officers,
most participants narrowed down to a small subset of models, and
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then used global FI to break the tie by favoring models that heav-
ily weighed features such as FICO score or number of trades in
the past 2 years. Two participants used FI to verify that the model
they intended to select did not exclude important features for the
lending domain. Our current visual design compares FI values from
all models for one feature. Participants suggested ways to make
cross-feature comparison more intuitive, such as by highlighting a
selected model’s FI values across all feature panels or allowing fea-
ture panels to be sorted by FI of a selected model. In some variants,
AutoML applies feature transformation and indicates transforma-
tion in the name, such as log_ or _pca_. This convention caused
some confusion and we noticed that some participants misunder-
stood situations when a model weighed the transformed feature. It
may have been necessary to group related transformed features and
provide more information on what AutoML did during optimization.
Only a small number of participants explored local FI information.
One participant brushed to select data points on which the best
candidate made wrong predictions in order to examine why. Some
commented that they “didn’t feel the complexity of the task is high
enough to use this,” since they might not have cared why a model
made wrong predictions.

4.0.2 Probability Scatterplot Matrix. Participants welcomed the
idea of having all models compared in one visual display and being
able to slice the data by brushing. Most participants quickly grasped
that the scatterplots could help them compare confidences of mod-
els and different types of errors amongst them. Some used it to
verify that the model they intended to choose was more confident
in its predictions by examining distribution of dots. For scenario
of lowering false positives, participants used scatterplots to reason
about different types of errors. One participant paid attention to
the diagonal of the last-column plots (where the x and y axes are
for the same model) and looked for a “clean upper right corner.”
However, the coordinate system was initially confusing for some
participants, akin to the finding in Zhang et al. [35] that training is
needed for users to understand these plots and what the dot distri-
bution patterns mean. Interpretation of plots is more challenging
in the AutoML context, since different ML algorithms with distinct
distributions are being compared (some decision tree and random
forest models have discrete probabilities, while others have contin-
uous probabilities). Models with discrete probabilities also created
visual clutter on the plots. Several participants suggested to show
the number of points in each quadrant or brushing selection. Some
wished to see raw data when selecting individual points on the
plots, or select instances from a data table and highlight them in the
plots. These comments suggest that AutoML users are interested
in zooming in on specific instances. Since they may not be as famil-
iar with the data when using AutoML compared to hand-crafting
a model, a visual display of the instance space could help them
identify instances of interest.

4.0.3 Design Recommendations. From our qualitative analysis, we
identify four areas of user needs around model comparison that
should be supported specifically for AutoML.

Enable multi-criteria comparison with multiple levels of
model details. Our study demonstrates that the optimal choice
in an AutoML search space could be determined by many criteria,
which challenges the current practice of AutoML recommending

the “best” model based solely on performance metrics. While our
study intentionally introduced criteria regarding types of errors,
interpretability, and model reasoning aligning with domain knowl-
edge, participants incorporated additional criteria such as confi-
dence and reasons for errors. Two participants also commented
that computational budget may also be an important criterion. We
asked participants if they had experience with model comparison
in their own work (not limited to AutoML), and majority confirmed
so and commented that it is often done by examining performance
only because turn-around time for programmatically-manipulating
the data and generating comparative plots is steep. Given the im-
portance of model comparison tasks in AutoML, it is necessary
to provide various comparative measures in an interactive and
speedy manner. When given a large number of models generated
by AutoML, participants used a variety of comparative reasoning
strategies: narrowing-down choices, breaking a close tie, reason-
ing about trade-offs amongst criteria, and verifying a choice to
strengthen confidence.

Support understanding data. One user need repeatedly men-
tioned in interviews is to better understand the data: types of fea-
tures, their range and distribution, and example data instances.
While a lack of knowledge about data is an artifact of the study
setup, it could also represent the reality for AutoML users, as they
are no longer required to spend time understanding the data. Data
scientists frequently utilize model transparency features as lenses
to understand their data [6, 10]. In AutoML, tools such as Model
LineUpper could be the primary place for users to get in touch with
their data and retain a sense of agency in the modeling task.

Enable comparison across algorithms and optimization
methods. The set of models generated by AutoML have an innate
hierarchical structure as AutoML iteratively applies optimization
variants to different ML algorithms. Participants had a tendency
of focusing on comparing one selected variation across different
algorithms, but also showed interest in understanding how an opti-
mization variant changed a model’s behavior. Visualizations that
group models by their base algorithm and by optimization vari-
ant could allow users to understand the impact of optimization
at a glance. However, making comparisons between models that
use distinct ML algorithms could impose nuanced design require-
ments that an AutoML tool should carefully consider in order to be
generalizable.

Combine algorithmic and procedural transparency. Partic-
ipants showed intertwined needs between understanding how Au-
toML generated models work, and how they were generated, such
as which optimization methods were applied and which parame-
ter values were used. This procedural information is necessary for
users to make sense of hierarchical structure of models to perform
comparative analysis like understanding the meaning of a trans-
formed feature and different rationales between model variants.
When seeing a sub-optimal FI value of a preferred model, a par-
ticipant expressed interest in “tweaking how AutoML does feature
engineering,” suggesting a holistic understanding of algorithmic
and procedural operations could facilitate better user control of
AutoML.
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5 CONCLUSION
To support model comparison for AutoML in which users may
apply diverse context-specific criteria, Model LineUpper utilizes
linked visualizations of data instances and feature importance. Our
study highlights the need to help AutoML users understand detailed
behaviors of machine-created models, and shows users’ complex
reasoning strategies and nuanced requirements resulting from the
unique structure and building process of AutoML models. Future
work should explore supporting a more structured model compari-
son workflow to help users navigate these complexities.
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